Xia Xiaona, Liu Jieqiong, Cui Jiufa, You Yi, Huang Chencui, Li Hui, Zhang Daiyong, Ren Qingguo, Jiang Qingjun, Meng Xiangshui
Department of Radiology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China.
Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China.
Eur J Radiol. 2025 Feb;183:111871. doi: 10.1016/j.ejrad.2024.111871. Epub 2024 Dec 6.
To evaluate the ability of non-contrast computed tomography based peri-hematoma and intra-hematoma radiomic features to predict the 90-day poor functional outcome for spontaneous intracerebral hemorrhage (sICH) and to present an effective clinically relevant machine learning system to assist in prognosis prediction.
We retrospectively analyzed the data of 691 patients diagnosed with sICH at two medical centers. Fifteen radiomic features from the intra- and peri-hematoma regions were extracted and selected to build six radiomics models. The clinical-semantic model and nomogram model were constructed to compare prediction abilities. The areas under the curve (AUC) and decision curve analysis were used to evaluate discriminative performance.
Combining radiomics of the intra-hematoma with peri-hematoma regions significantly improved the AUC to 0.843 compared with radiomics of the intra-hematoma region (AUC = 0.780, P < 0.001) in the test set. A similar trend was observed in the external validation cohort (AUC, 0.769 vs. 0.793, P = 0.709). The nomogram, which integrates clinical-semantic signatures with intra-hematoma and peri-hematoma radiomics signatures, accurately predicted a 90-day poor functional outcome in both the test and external validation sets (AUC 0.879 and 0.901, respectively).
The nomogram constructed using clinical-semantic signatures and combined intra-hematoma and peri-hematoma radiomics signatures showed the potential to precisely predict 90-day poor functional outcomes for sICH.
评估基于非增强计算机断层扫描的血肿周围和血肿内放射组学特征预测自发性脑出血(sICH)90天功能预后不良的能力,并提出一种有效的临床相关机器学习系统以辅助预后预测。
我们回顾性分析了两个医疗中心691例诊断为sICH患者的数据。从血肿内和血肿周围区域提取并选择了15个放射组学特征,以建立6个放射组学模型。构建临床语义模型和列线图模型以比较预测能力。使用曲线下面积(AUC)和决策曲线分析来评估判别性能。
在测试集中,将血肿内放射组学与血肿周围区域相结合,与血肿内放射组学相比,AUC显著提高至0.843(AUC = 0.780,P<0.001)。在外部验证队列中观察到类似趋势(AUC,0.769对0.793,P = 0.709)。整合临床语义特征与血肿内和血肿周围放射组学特征的列线图在测试集和外部验证集中均准确预测了90天功能预后不良(AUC分别为0.879和0.901)。
使用临床语义特征以及联合血肿内和血肿周围放射组学特征构建的列线图显示出精确预测sICH患者90天功能预后不良的潜力。