Ning Youquan, Yu Qiang, Fan Xin, Jiang Wenhao, Chen Xinwei, Jiang Huan, Xie Kai, Liu Rui, Zhou Yuan, Zhang Xiaodi, Lv Fajin, Xu Xiaoquan, Peng Juan
Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Sci Rep. 2025 Aug 31;15(1):32021. doi: 10.1038/s41598-025-17393-4.
Intracerebral hemorrhage (ICH) is a severe form of stroke with high mortality and disability, where early hematoma expansion (HE) critically influences prognosis. Previous studies suggest that revised hematoma expansion (rHE), defined to include intraventricular hemorrhage (IVH) growth, provides improved prognostic accuracy. Therefore, this study aimed to develop a deep learning model based on noncontrast CT (NCCT) to predict high-risk rHE in ICH patients, enabling timely intervention. A retrospective dataset of 775 spontaneous ICH patients with baseline and follow-up CT scans was collected from two centers and split into training (n = 389), internal-testing (n = 167), and external-testing (n = 219) cohorts. 2D/3D convolutional neural network (CNN) models based on ResNet-101, ResNet-152, DenseNet-121, and DenseNet-201 were separately developed using baseline NCCT images, and the activation areas of the optimal deep learning model were visualized using gradient-weighted class activation mapping (Grad-CAM). Two baseline logistic regression clinical models based on the BRAIN score and independent clinical-radiologic predictors were also developed, along with combined-logistic and combined-SVM models incorporating handcrafted radiomics features and clinical-radiologic factors. Model performance was assessed using the area under the receiver operating characteristic curve (AUC). The 2D-ResNet-101 model outperformed others, with an AUC of 0.777 (95%CI, 0.716-0.830) in the external-testing set, surpassing the baseline clinical-radiologic model and the BRAIN score (AUC increase of 0.087, p = 0.022; 0.119, p = 0.003). Compared to the combined-logistic and combined-SVM models, AUC increased by 0.083 (p = 0.029) and 0.074 (p < 0.058), respectively. The deep learning model can identify ICH patients with high-risk rHE with favorable predictive performance than traditional baseline models based on clinical-radiologic variables and radiomics features.
脑出血(ICH)是一种严重的中风形式,具有高死亡率和致残率,早期血肿扩大(HE)对预后有至关重要的影响。先前的研究表明,修订后的血肿扩大(rHE)(定义为包括脑室内出血(IVH)的增长)能提高预后预测的准确性。因此,本研究旨在开发一种基于非增强CT(NCCT)的深度学习模型,以预测ICH患者的高风险rHE,从而实现及时干预。从两个中心收集了775例有基线和随访CT扫描的自发性ICH患者的回顾性数据集,并将其分为训练队列(n = 389)、内部测试队列(n = 167)和外部测试队列(n = 219)。使用基线NCCT图像分别开发了基于ResNet - 101、ResNet - 152、DenseNet - 121和DenseNet - 201的2D/3D卷积神经网络(CNN)模型,并使用梯度加权类激活映射(Grad - CAM)对最佳深度学习模型的激活区域进行可视化。还开发了两个基于BRAIN评分和独立临床 - 放射学预测指标的基线逻辑回归临床模型,以及结合手工制作的放射组学特征和临床 - 放射学因素的联合逻辑回归模型和联合支持向量机(SVM)模型。使用受试者操作特征曲线下面积(AUC)评估模型性能。2D - ResNet - 101模型表现优于其他模型,在外部测试集中AUC为0.777(95%CI,0.716 - 0.830),超过了基线临床 - 放射学模型和BRAIN评分(AUC分别增加0.087,p = 0.022;0.119,p = 0.003)。与联合逻辑回归模型和联合SVM模型相比,AUC分别增加了0.083(p = 0.029)和0.074(p < 0.058)。与基于临床 - 放射学变量和放射组学特征的传统基线模型相比,深度学习模型能够识别具有高风险rHE的ICH患者,并具有良好的预测性能。