Suppr超能文献

基于计算机断层扫描(CT)成像鉴别甲状腺眼病和眼眶肌炎的深度学习模型

Deep learning model for differentiating thyroid eye disease and orbital myositis on computed tomography (CT) imaging.

作者信息

Ha Sierra K, Lin Lisa Y, Shi Min, Wang Mengyu, Han Ji Yun, Lee Nahyoung Grace

机构信息

Ophthalmic Plastic Surgery Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA.

Harvard Ophthalmology AI Lab, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Orbit. 2025 Jun 3:1-9. doi: 10.1080/01676830.2025.2510587.

Abstract

PURPOSE

To develop a deep learning model using orbital computed tomography (CT) imaging to accurately distinguish thyroid eye disease (TED) and orbital myositis, two conditions with overlapping clinical presentations.

METHODS

Retrospective, single-center cohort study spanning 12 years including normal controls, TED, and orbital myositis patients with orbital imaging and examination by an oculoplastic surgeon. A deep learning model employing a Visual Geometry Group-16 network was trained on various binary combinations of TED, orbital myositis, and controls using single slices of coronal orbital CT images.

RESULTS

A total of 1628 images from 192 patients (110 TED, 51 orbital myositis, 31 controls) were included. The primary model comparing orbital myositis and TED had accuracy of 98.4% and area under the receiver operating characteristic curve (AUC) of 0.999. In detecting orbital myositis, it had a sensitivity, specificity, and F1 score of 0.964, 0.994, and 0.984, respectively.

CONCLUSIONS

Deep learning models can differentiate TED and orbital myositis based on a single, coronal orbital CT image with high accuracy. Their ability to distinguish these conditions based not only on extraocular muscle enlargement but also other salient features suggests potential applications in diagnostics and treatment beyond these conditions.

摘要

目的

开发一种利用眼眶计算机断层扫描(CT)成像的深度学习模型,以准确区分甲状腺眼病(TED)和眼眶肌炎,这两种疾病临床表现有重叠。

方法

一项回顾性单中心队列研究,跨度为12年,纳入正常对照、TED以及接受眼整形手术医生进行眼眶成像检查的眼眶肌炎患者。使用冠状位眼眶CT图像单层面,在TED、眼眶肌炎和对照的各种二元组合上训练采用视觉几何组16网络的深度学习模型。

结果

共纳入192例患者的1628张图像(110例TED、51例眼眶肌炎、31例对照)。比较眼眶肌炎和TED的主要模型准确率为98.4%,受试者操作特征曲线下面积(AUC)为0.999。在检测眼眶肌炎时,其敏感性、特异性和F1分数分别为0.964、0.994和0.984。

结论

深度学习模型能够基于单张冠状位眼眶CT图像高精度地区分TED和眼眶肌炎。它们不仅能够基于眼外肌增粗,还能基于其他显著特征区分这些疾病的能力表明,其在这些疾病之外的诊断和治疗中具有潜在应用价值。

相似文献

7
Surgical orbital decompression for thyroid eye disease.甲状腺眼病的眼眶减压手术
Cochrane Database Syst Rev. 2011 Dec 7(12):CD007630. doi: 10.1002/14651858.CD007630.pub2.

本文引用的文献

4
Orbital and eyelid diseases: The next breakthrough in artificial intelligence?眼眶及眼睑疾病:人工智能的下一个突破?
Front Cell Dev Biol. 2022 Nov 18;10:1069248. doi: 10.3389/fcell.2022.1069248. eCollection 2022.
10
Principles and Practice of Explainable Machine Learning.可解释机器学习原理与实践
Front Big Data. 2021 Jul 1;4:688969. doi: 10.3389/fdata.2021.688969. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验