Suppr超能文献

具有确定性侧向位移效应的流体动力学色谱法。

Hydrodynamic Chromatography with Deterministic Lateral Displacement Effect.

作者信息

Biagioni Valentina

机构信息

Dipartimento di Ingegneria Chimica Materiali Ambiente, Sapienza Università di Roma, Via Eudossiana 18, Roma 00184, Italy.

出版信息

Anal Chem. 2025 Jun 17;97(23):12223-12232. doi: 10.1021/acs.analchem.5c00947. Epub 2025 Jun 3.

Abstract

Hydrodynamic chromatography (HDC) is a flow-driven passive method for separating micrometric/nanometric particles based on the interaction between a nonuniform velocity profile and Brownian diffusion, which causes particles of different size to migrate at different average velocity throughout the separation column. Despite its conceptual simplicity and relative ease of implementation, HDC remains to date an underutilized technique in view of the lengthy channels and large operational times required. In the search for optimal geometries enhancing separation efficiency, micro-Pillar Array Columns (μPACs), constituted by a doubly periodic obstacle lattice aligned with the direction of the flow, have been successfully proposed and tested. The aim of this article is to show that a further improvement of HDC efficiency in μPACs is possible by enforcing a symmetry breakup, where the lattice is misaligned by an angle θ with respect to the flow direction. The mismatch between the flow direction and the lattice axes triggers a new separation mechanism, referred to as Deterministic Lateral Displacement (DLD), which causes particles of different size to migrate along different directions through the lattice. So far, DLD has been enforced exclusively in continuous separations run under steady-state conditions.. If an unsteady (chromatographic) operating mode in a slanted μPACs is enforced, differences in migration velocities and migration angles act simultaneously as two independent mechanisms. Theoretical/numerical evidence is provided, showing that the synergy between the two separation drives can shorten device lengths and analysis times by a factor of 10 or even higher (depending on the analytical target) when compared to plain-HDC. The results presented are based on an advection-diffusion template enforcing the classical excluded-volume model to account for particle-wall interactions, an approach previously validated against experimental data by different research groups, both in standard μPACs-HDC and in continuous DLD devices. Numerical results of the average particle migration angle and velocity magnitude are obtained by two independent (Eulerian and Lagrangian) computational approaches. A case study of geometry is used throughout to illustrate the concrete implementation of the method for a multidispersed mixture of particles of five nominal diameters ranging from 1 to 1.6 μm.

摘要

流体动力学色谱法(HDC)是一种基于非均匀速度分布与布朗扩散之间的相互作用来分离微米/纳米级颗粒的流动驱动被动方法,这种相互作用会使不同大小的颗粒在整个分离柱中以不同的平均速度迁移。尽管HDC概念简单且相对易于实施,但鉴于所需的长通道和较长的操作时间,它至今仍是一种未得到充分利用的技术。在寻找提高分离效率的最佳几何结构时,由与流动方向对齐的双周期障碍物晶格构成的微柱阵列柱(μPACs)已被成功提出并测试。本文的目的是表明,通过强制对称性破坏,即晶格相对于流动方向倾斜角度θ,可以进一步提高μPACs中HDC的效率。流动方向与晶格轴之间的不匹配触发了一种新的分离机制,称为确定性横向位移(DLD),它使不同大小的颗粒沿不同方向穿过晶格迁移。到目前为止,DLD仅在稳态条件下的连续分离中得到应用。如果在倾斜的μPACs中采用非稳态(色谱)操作模式,迁移速度和迁移角度的差异会同时作为两种独立的机制起作用。提供了理论/数值证据,表明与普通HDC相比,两种分离驱动力之间的协同作用可将装置长度和分析时间缩短10倍甚至更高(取决于分析目标)。所呈现的结果基于一个平流扩散模板,该模板采用经典的排除体积模型来考虑颗粒与壁面的相互作用,这是一种先前已被不同研究小组针对标准μPACs - HDC和连续DLD装置中的实验数据进行验证的方法。通过两种独立的(欧拉和拉格朗日)计算方法获得了平均颗粒迁移角度和速度大小的数值结果。贯穿全文使用了一个几何案例研究来说明该方法对于五种标称直径范围从1到1.6μm的多分散颗粒混合物的具体实施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9184/12177873/ffb0370c2686/ac5c00947_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验