Li Hui, Zhang Han, Zhu Jianhao, Hu Ningjiang, Du Feipeng, Liu Siqi, Erden Fuat, Yang Ming, Li Pengcheng, He Chaobin
Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, State Key Laboratory of Green and Efficient Development of Phosphorus Resources, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, 117574, Singapore; Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 117602, Singapore.
J Colloid Interface Sci. 2025 Nov 15;698:138057. doi: 10.1016/j.jcis.2025.138057. Epub 2025 Jun 1.
Despite interconnected uniform carbon nanotubes (CNTs) networks can lead to ultrahigh electrical conductivity, the concomitant relatively low Seebeck coefficient results in an inferior thermoelectric (TE) power factor due to the typical trade-off relationship between electrical conductivity and Seebeck coefficient. Herein, we present a facile approach to enhance the TE performance of CNT composites by embedding lignin into highly conductive CNT network via a dip-coating approach. The energy filtering effect at the CNTs/lignin interfaces enables a significant improvement in the Seebeck coefficient. Concurrently, the preservation of the CNTs conductive network structure ensures continuous pathways for carrier transport, thereby maintaining a moderate magnitude of electrical conductivity despite the incorporation of insulating lignin. Through systematic optimization of lignin concentration and soaking duration, a maximum power factor of 550.5 μW m K is achieved for the CNTs/lignin composite prepared with a 2 mg mL lignin solution for 5 min, superior to that of most reported CNTs based composite films. Considering the remarkable TE performance, a TE device comprising 5 pairs of CNTs/lignin films and Ni wires is fabricated to deliver a high output power of 220 nW at ΔT of 30 K. Moreover, the device exhibited remarkable temperature-sensing capabilities and stable voltage response, highlighting its potential application as a wearable power source and temperature sensor. This work not only provides a feasible strategy for synergistically enhancing the TE properties of CNT composites using biomass lignin, but also paves the way for the utilization of biomass lignin for wearable electronics.
尽管相互连接的均匀碳纳米管(CNT)网络可导致超高电导率,但由于电导率和塞贝克系数之间典型的权衡关系,随之而来的相对较低的塞贝克系数会导致热电(TE)功率因子较差。在此,我们提出一种简便方法,通过浸涂法将木质素嵌入高导电CNT网络中来提高CNT复合材料的TE性能。CNTs/木质素界面处的能量过滤效应可显著提高塞贝克系数。同时,CNT导电网络结构的保留确保了载流子传输的连续路径,从而尽管加入了绝缘木质素仍能保持适度的电导率。通过对木质素浓度和浸泡时间的系统优化,用2mg/mL木质素溶液浸泡5分钟制备的CNTs/木质素复合材料实现了550.5μW m⁻¹ K⁻²的最大功率因子,优于大多数报道的基于CNT的复合薄膜。考虑到卓越的TE性能,制备了一个由5对CNTs/木质素薄膜和镍线组成的TE器件,在30K的温差下可提供220nW的高输出功率。此外,该器件表现出显著的温度传感能力和稳定的电压响应,突出了其作为可穿戴电源和温度传感器的潜在应用。这项工作不仅为利用生物质木质素协同增强CNT复合材料的TE性能提供了一种可行策略,也为生物质木质素在可穿戴电子产品中的应用铺平了道路。