Delaleau Mildred, Bidnenko Vladimir, Eveno Eric, Kostova Gergana, Black Johnathan C, McGovern Stephen, Pellegrini Olivier, Dérozier Sandra, Jules Matthieu, Condon Ciaran, Durand Sylvain, Bidnenko Elena, Boudvillain Marc
Centre de Biophysique Moléculaire, CNRS UPR4301, Affiliated with Université d'Orléans, rue Charles Sadron, 45071 Orléans cedex 2, France.
Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
Nucleic Acids Res. 2025 Aug 11;53(15). doi: 10.1093/nar/gkaf765.
Recent evidence indicates that the bacterial Rho helicase regulates Bacillus subtilis gene expression in a growth-dependent manner. This regulation, along with extensive in vivo trimming of Rho-dependent transcript 3'-ends, complicates the identification of Rho-dependent transcription terminators using standard transcriptomic approaches. To overcome this challenge, we applied Helicase-SELEX to precisely map Rho utilization (Rut) sites genome-wide. Using B. subtilis Rho (BsRho), we identified 600 putative Rut sites, while the more permissive Escherichia coli Rho (EcRho) revealed 4189 sites, including specimens known to regulate B. subtilis genes. Comparative analysis showed that both enzymes recognize similar pyrimidine-rich sequences, though BsRho favors short unstructured Rut motifs whereas EcRho can act on presumably more structured RNAs without requiring accessory factors. In vivo validation of selected Rut sites confirmed Rho-dependent regulation and extensive PNPase-mediated processing of Rho-terminated transcripts. Collectively, our results reveal a rich and complex Rho-dependent regulatory network in B. subtilis, encompassing the widespread control of antisense transcription and genes/operons of both primary and secondary metabolism. Although nonessential under standard laboratory conditions, Rho thus likely contributes to B. subtilis fitness and survival in more demanding environments. Our comprehensive compendium of Rut sites offers a valuable resource for exploring this adaptive regulatory landscape.
最近的证据表明,细菌Rho解旋酶以生长依赖的方式调节枯草芽孢杆菌的基因表达。这种调节,以及对Rho依赖性转录本3'末端的广泛体内修剪,使得使用标准转录组学方法鉴定Rho依赖性转录终止子变得复杂。为了克服这一挑战,我们应用解旋酶-SELEX在全基因组范围内精确绘制Rho利用(Rut)位点。使用枯草芽孢杆菌Rho(BsRho),我们鉴定出600个推定的Rut位点,而宽容性更强的大肠杆菌Rho(EcRho)则揭示了4189个位点,包括已知调节枯草芽孢杆菌基因的样本。比较分析表明,两种酶都识别相似的富含嘧啶的序列,尽管BsRho倾向于短的无结构Rut基序,而EcRho可以作用于可能更具结构的RNA,而不需要辅助因子。对选定Rut位点的体内验证证实了Rho依赖性调节以及PNPase介导的对Rho终止转录本的广泛加工。总体而言,我们的结果揭示了枯草芽孢杆菌中一个丰富而复杂的Rho依赖性调控网络,包括对反义转录以及初级和次级代谢的基因/操纵子的广泛控制。虽然在标准实验室条件下非必需,但Rho可能有助于枯草芽孢杆菌在更苛刻环境中的适应性和生存。我们全面的Rut位点汇编为探索这种适应性调控景观提供了宝贵资源。