Suppr超能文献

基于增强残差注意力的特定主体网络(ErAS-Net):具有多种注意力机制的基于面部表情的疼痛分类

Enhanced residual attention-based subject-specific network (ErAS-Net): facial expression-based pain classification with multiple attention mechanisms.

作者信息

Morsali Mahdi, Ghaffari Aboozar

机构信息

Department of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran.

出版信息

Sci Rep. 2025 Jun 3;15(1):19425. doi: 10.1038/s41598-025-04552-w.

Abstract

The automatic detection of pain through the analysis of facial expressions is indeed one of the most critical challenges in the healthcare system. One of the significant challenges in automatic pain detection from facial expressions is the variability in how individuals express pain and other emotions through their facial deformations. This research aims to solve this issue by presenting ErAS-Net, an Enhanced Residual Attention-Based Subject-Specific Network that employs various attention mechanisms. Through transfer learning and multiple attention mechanisms, the proposed deep learning model is designed to mimic human perception of facial expressions, thereby enhancing its pain recognition ability and capturing the unique features of each individual's facial expressions based on their specific patterns. The UNBC-McMaster Shoulder Pain dataset is used to demonstrate the effectiveness of the proposed deep learning algorithm, which achieves impressive values of 98.77% accuracy for binary classification and 94.21% for four-level pain intensity classification using tenfold cross-validation. Additionally, the model attained 89.83% accuracy for binary classification with the Leave-One-Subject-Out (LOSO) validation method. To further evaluate generalizability, a cross-dataset experiment was conducted using the BioVid Heat Pain Database, where ErAS-Net achieved 78.14% accuracy for binary pain detection on unseen data without fine-tuning. The fact that this finding supports the attention mechanism and human perception is why the proposed model proves to be a powerful and reliable tool for automatic pain detection.

摘要

通过面部表情分析自动检测疼痛确实是医疗保健系统中最关键的挑战之一。从面部表情自动检测疼痛的一个重大挑战是个体通过面部变形表达疼痛和其他情绪的方式存在差异。本研究旨在通过提出ErAS-Net来解决这个问题,ErAS-Net是一种基于增强残差注意力的特定个体网络,采用了各种注意力机制。通过迁移学习和多种注意力机制,所提出的深度学习模型旨在模仿人类对面部表情的感知,从而提高其疼痛识别能力,并根据每个个体的特定模式捕捉其面部表情的独特特征。使用UNBC-McMaster肩部疼痛数据集来证明所提出的深度学习算法的有效性,该算法在十折交叉验证中,二元分类的准确率达到了令人印象深刻的98.77%,四级疼痛强度分类的准确率达到了94.21%。此外,使用留一受试者法(LOSO)验证方法时,该模型在二元分类中的准确率达到了89.83%。为了进一步评估泛化能力,使用BioVid热痛数据库进行了跨数据集实验,在不进行微调的情况下,ErAS-Net在未见数据的二元疼痛检测中达到了78.14%的准确率。这一发现支持了注意力机制和人类感知,这就是为什么所提出的模型被证明是一种用于自动疼痛检测的强大且可靠的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da7a/12134349/86bb39ea84f9/41598_2025_4552_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验