Suppr超能文献

深度疼痛:利用长短时记忆网络进行表情分类。

Deep Pain: Exploiting Long Short-Term Memory Networks for Facial Expression Classification.

出版信息

IEEE Trans Cybern. 2022 May;52(5):3314-3324. doi: 10.1109/TCYB.2017.2662199. Epub 2022 May 19.

Abstract

Pain is an unpleasant feeling that has been shown to be an important factor for the recovery of patients. Since this is costly in human resources and difficult to do objectively, there is the need for automatic systems to measure it. In this paper, contrary to current state-of-the-art techniques in pain assessment, which are based on facial features only, we suggest that the performance can be enhanced by feeding the raw frames to deep learning models, outperforming the latest state-of-the-art results while also directly facing the problem of imbalanced data. As a baseline, our approach first uses convolutional neural networks (CNNs) to learn facial features from VGG_Faces, which are then linked to a long short-term memory to exploit the temporal relation between video frames. We further compare the performances of using the so popular schema based on the canonically normalized appearance versus taking into account the whole image. As a result, we outperform current state-of-the-art area under the curve performance in the UNBC-McMaster Shoulder Pain Expression Archive Database. In addition, to evaluate the generalization properties of our proposed methodology on facial motion recognition, we also report competitive results in the Cohn Kanade+ facial expression database.

摘要

疼痛是一种不愉快的感觉,已被证明是患者康复的一个重要因素。由于这在人力资源方面成本高昂,且难以客观进行,因此需要自动系统来进行测量。在本文中,与目前仅基于面部特征的疼痛评估的最新技术不同,我们建议通过向深度学习模型提供原始帧来提高性能,从而在直接面对数据不平衡问题的同时,超越最新的技术水平。作为基线,我们的方法首先使用卷积神经网络(CNN)从 VGG_Faces 中学习面部特征,然后将其与长短期记忆模型相连接,以利用视频帧之间的时间关系。我们进一步比较了基于规范归一化外观的流行模式与考虑整个图像的性能。结果,我们在 UNBC-McMaster 肩部疼痛表达档案数据库中的曲线下面积性能方面超越了当前的技术水平。此外,为了评估我们提出的方法在面部运动识别方面的泛化能力,我们还在 Cohn Kanade+面部表情数据库中报告了具有竞争力的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验