Rogozinski Marcos, Hurtado Jan, Sierra-Franco Cesar A, R Hall Barbosa Carlos, Raposo Alberto
Department of Informatics, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
Tecgraf Institute, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
J Imaging Inform Med. 2025 Jun 3. doi: 10.1007/s10278-025-01567-7.
This study introduces a novel methodology to enhance nipple segmentation in digital mammography, a critical component for accurate medical analysis and computer-aided detection systems. The nipple is a key anatomical landmark for multi-view and multi-modality breast image registration, where accurate localization is vital for ensuring image quality and enabling precise registration of anomalies across different mammographic views. The proposed approach significantly outperforms baseline methods, particularly in challenging cases where previous techniques failed. It achieved successful detection across all cases and reached a mean Intersection over Union (mIoU) of 0.63 in instances where the baseline failed entirely. Additionally, it yielded nearly a tenfold improvement in Hausdorff distance and consistent gains in overlap-based metrics, with the mIoU increasing from 0.7408 to 0.8011 in the craniocaudal (CC) view and from 0.7488 to 0.7767 in the mediolateral oblique (MLO) view. Furthermore, its generalizability suggests the potential for application to other breast imaging modalities and related domains facing challenges such as class imbalance and high variability in object characteristics.
本研究介绍了一种新颖的方法,用于增强数字乳腺摄影中的乳头分割,这是准确医学分析和计算机辅助检测系统的关键组成部分。乳头是多视图和多模态乳腺图像配准的关键解剖标志,准确的定位对于确保图像质量以及实现不同乳腺摄影视图中异常的精确配准至关重要。所提出的方法显著优于基线方法,特别是在先前技术失败的具有挑战性的情况下。它在所有病例中都成功检测到,并且在基线方法完全失败的情况下,平均交并比(mIoU)达到了0.63。此外,它在豪斯多夫距离上实现了近十倍的改进,并且在基于重叠的指标上持续提升,在头尾位(CC)视图中,mIoU从0.7408增加到0.8011,在内外斜位(MLO)视图中,从0.7488增加到0.7767。此外,其通用性表明它有可能应用于其他乳腺成像模态以及面临诸如类别不平衡和对象特征高度变异性等挑战的相关领域。