Panambur Adarsh Bhandary, Bhat Sheethal, Yu Hui, Madhu Prathmesh, Bayer Siming, Maier Andreas
Siemens Healthineers, Karl Heinz Kaske Str. 5, 91052, Erlangen, Bayern, Germany.
Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 3, 91058, Erlangen, Bayern, Germany.
Int J Comput Assist Radiol Surg. 2025 Mar;20(3):433-440. doi: 10.1007/s11548-024-03317-6. Epub 2025 Jan 15.
Breast cancer remains one of the most prevalent cancers globally, necessitating effective early screening and diagnosis. This study investigates the effectiveness and generalizability of our recently proposed data augmentation technique, attention-guided erasing (AGE), across various transfer learning classification tasks for breast abnormality classification in mammography.
AGE utilizes attention head visualizations from DINO self-supervised pretraining to weakly localize regions of interest (ROI) in images. These localizations are then used to stochastically erase non-essential background information from training images during transfer learning. Our research evaluates AGE across two image-level and three patch-level classification tasks. The image-level tasks involve breast density categorization in digital mammography (DM) and malignancy classification in contrast-enhanced mammography (CEM). Patch-level tasks include classifying calcifications and masses in scanned film mammography (SFM), as well as malignancy classification of ROIs in CEM.
AGE significantly boosts classification performance with statistically significant improvements in mean F1-scores across four tasks compared to baselines. Specifically, for image-level classification of breast density in DM and malignancy in CEM, we achieve gains of 2% and 1.5%, respectively. Additionally, for patch-level classification of calcifications in SFM and CEM ROIs, gains of 0.4% and 0.6% are observed, respectively. However, marginal improvement is noted in the mass classification task, indicating the necessity for further optimization in tasks where critical features may be obscured by erasing techniques.
Our findings underscore the potential of AGE, a dataset- and task-specific augmentation strategy powered by self-supervised learning, to enhance the downstream classification performance of DL models, particularly involving ViTs, in medical imaging.
乳腺癌仍然是全球最常见的癌症之一,因此需要有效的早期筛查和诊断。本研究调查了我们最近提出的数据增强技术——注意力引导擦除(AGE),在乳腺钼靶图像中乳腺异常分类的各种迁移学习分类任务中的有效性和通用性。
AGE利用来自DINO自监督预训练的注意力头可视化来弱定位图像中的感兴趣区域(ROI)。然后,这些定位用于在迁移学习期间随机擦除训练图像中的非必要背景信息。我们的研究在两个图像级和三个补丁级分类任务中评估了AGE。图像级任务包括数字乳腺钼靶(DM)中的乳腺密度分类和对比增强乳腺钼靶(CEM)中的恶性肿瘤分类。补丁级任务包括对扫描胶片乳腺钼靶(SFM)中的钙化和肿块进行分类,以及对CEM中的ROI进行恶性肿瘤分类。
与基线相比,AGE显著提高了分类性能,在四项任务中的平均F1分数有统计学意义的显著提高。具体而言,对于DM中乳腺密度的图像级分类和CEM中恶性肿瘤的图像级分类,我们分别实现了2%和1.5%的增益。此外,对于SFM和CEM ROI中钙化的补丁级分类,分别观察到0.4%和0.6%的增益。然而,在肿块分类任务中观察到的改善很小,这表明在关键特征可能被擦除技术掩盖的任务中需要进一步优化。
我们的研究结果强调了AGE的潜力,这是一种由自监督学习驱动的特定于数据集和任务的增强策略,可提高DL模型在医学成像中的下游分类性能,特别是涉及视觉Transformer(ViT)的模型。