Cisterna-García Alejandro, González-Vidal Aurora, Martínez-Ibarra Antonio, Ye Yu, Guillén-Teruel Antonio, Bernal-Escobedo Luis, Skarmeta Antonio F
Department of Information and Communication Engineering, University of Murcia, Murcia, 30100, Spain.
Sci Rep. 2025 Jun 3;15(1):19481. doi: 10.1038/s41598-025-04524-0.
Streamflow prediction is crucial for efficient water resource management, flood forecasting and environmental protection. This is even more important in areas particularly vulnerable to environmental changes such our study area-the Mar Menor basin in the Region of Murcia, Spain-with a specific emphasis on the Albujón watercourse, a significant contributor to the Mar Menor. Utilizing data from stream gauge stations, nearby rain gauge stations, and piezometers, our research forecasts streamflow at two critical points: "La Puebla" and "Desembocadura" along the watercourse. Targeting short-term forecasts of 1, 12, and 24 hours, our study employs Machine and Deep Learning techniques after data preprocessing, which includes station selection, data granularity adjustment, and feature selection. A state-of-the-art data augmentation technique was used to balance periods of low and high streamflow. Results show that Random Forest slightly outperforms LSTM for 1-hour forecasts (NSE > 0.89, MAE < 0.01), while Long Short Term Memory with data augmentation excels for 12 and 24-hour forecasts (NSE > 0.12, MAE < 0.05). This is noteworthy in areas with torrential rains causing rapid streamflow increases, a more challenging yet less studied scenario in forecasting. The findings contribute to addressing the challenges associated with streamflow prediction in vulnerable regions.
径流预测对于高效的水资源管理、洪水预报和环境保护至关重要。在特别容易受到环境变化影响的地区,这一点尤为重要,比如我们的研究区域——西班牙穆尔西亚地区的马尔梅诺尔盆地,特别强调阿尔布琼河道,它是马尔梅诺尔的一个重要支流。利用来自水文站、附近雨量站和测压计的数据,我们的研究预测了河道上两个关键点“拉普埃布拉”和“河口”的径流。针对1小时、12小时和24小时的短期预报,我们的研究在数据预处理后采用了机器学习和深度学习技术,数据预处理包括站点选择、数据粒度调整和特征选择。使用了一种先进的数据增强技术来平衡低径流和高径流时期。结果表明,对于1小时的预报,随机森林略优于长短期记忆网络(NSE>0.89,MAE<0.01),而采用数据增强的长短期记忆网络在12小时和24小时的预报中表现出色(NSE>0.12,MAE<0.05)。在暴雨导致径流迅速增加的地区,这一点值得注意,这是预报中一个更具挑战性但研究较少的情景。这些发现有助于应对脆弱地区径流预测相关的挑战。