Suppr超能文献

用于流域径流预测的人工智能:以马略尔卡岛为例

Artificial intelligence for streamflow prediction in river basins: a use case in Mar Menor.

作者信息

Cisterna-García Alejandro, González-Vidal Aurora, Martínez-Ibarra Antonio, Ye Yu, Guillén-Teruel Antonio, Bernal-Escobedo Luis, Skarmeta Antonio F

机构信息

Department of Information and Communication Engineering, University of Murcia, Murcia, 30100, Spain.

出版信息

Sci Rep. 2025 Jun 3;15(1):19481. doi: 10.1038/s41598-025-04524-0.

Abstract

Streamflow prediction is crucial for efficient water resource management, flood forecasting and environmental protection. This is even more important in areas particularly vulnerable to environmental changes such our study area-the Mar Menor basin in the Region of Murcia, Spain-with a specific emphasis on the Albujón watercourse, a significant contributor to the Mar Menor. Utilizing data from stream gauge stations, nearby rain gauge stations, and piezometers, our research forecasts streamflow at two critical points: "La Puebla" and "Desembocadura" along the watercourse. Targeting short-term forecasts of 1, 12, and 24 hours, our study employs Machine and Deep Learning techniques after data preprocessing, which includes station selection, data granularity adjustment, and feature selection. A state-of-the-art data augmentation technique was used to balance periods of low and high streamflow. Results show that Random Forest slightly outperforms LSTM for 1-hour forecasts (NSE > 0.89, MAE < 0.01), while Long Short Term Memory with data augmentation excels for 12 and 24-hour forecasts (NSE > 0.12, MAE < 0.05). This is noteworthy in areas with torrential rains causing rapid streamflow increases, a more challenging yet less studied scenario in forecasting. The findings contribute to addressing the challenges associated with streamflow prediction in vulnerable regions.

摘要

径流预测对于高效的水资源管理、洪水预报和环境保护至关重要。在特别容易受到环境变化影响的地区,这一点尤为重要,比如我们的研究区域——西班牙穆尔西亚地区的马尔梅诺尔盆地,特别强调阿尔布琼河道,它是马尔梅诺尔的一个重要支流。利用来自水文站、附近雨量站和测压计的数据,我们的研究预测了河道上两个关键点“拉普埃布拉”和“河口”的径流。针对1小时、12小时和24小时的短期预报,我们的研究在数据预处理后采用了机器学习和深度学习技术,数据预处理包括站点选择、数据粒度调整和特征选择。使用了一种先进的数据增强技术来平衡低径流和高径流时期。结果表明,对于1小时的预报,随机森林略优于长短期记忆网络(NSE>0.89,MAE<0.01),而采用数据增强的长短期记忆网络在12小时和24小时的预报中表现出色(NSE>0.12,MAE<0.05)。在暴雨导致径流迅速增加的地区,这一点值得注意,这是预报中一个更具挑战性但研究较少的情景。这些发现有助于应对脆弱地区径流预测相关的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2384/12134185/fe94695b43a9/41598_2025_4524_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验