Suppr超能文献

基于机器学习算法的富营养化建模:以马略卡岛梅诺卡湾(西班牙)为例。

Using Machine-Learning Algorithms for Eutrophication Modeling: Case Study of Mar Menor Lagoon (Spain).

机构信息

Department of Civil Engineering, Universidad Católica San Antonio de Murcia, Campus de los Jerónimos s/n, 30107 Guadalupe, Murcia, Spain.

Department of Computer Engineering, Universitat Politècnica de València, Camí de Vera, s/n, 46022 Valencia, Spain.

出版信息

Int J Environ Res Public Health. 2020 Feb 13;17(4):1189. doi: 10.3390/ijerph17041189.

Abstract

The Mar Menor is a hypersaline coastal lagoon with high environmental value and a characteristic example of a highly anthropized hydro-ecosystem located in the southeast of Spain. An unprecedented eutrophication crisis in 2016 and 2019 with abrupt changes in the quality of its waters caused a great social alarm. Understanding and modeling the level of a eutrophication indicator, such as chlorophyll-a (Chl-a), benefits the management of this complex system. In this study, we investigate the potential machine learning (ML) methods to predict the level of Chl-a. Particularly, Multilayer Neural Networks (MLNNs) and Support Vector Regressions (SVRs) are evaluated using as a target dataset information of up to nine different water quality parameters. The most relevant input combinations were extracted using wrapper feature selection methods which simplified the structure of the model, resulting in a more accurate and efficient procedure. Although the performance in the validation phase showed that SVR models obtained better results than MLNNs, experimental results indicated that both ML algorithms provide satisfactory results in the prediction of Chl-a concentration, reaching up to 0.7 R (cross-validated coefficient of determination) for the best-fit models.

摘要

马略卡岛潟湖是一个具有高环境价值的高盐度沿海泻湖,是西班牙东南部高度人为化的水生态系统的典型代表。2016 年和 2019 年发生了一场前所未有的富营养化危机,其水质急剧变化,引起了公众的极大警觉。了解和模拟叶绿素-a(Chl-a)等富营养化指标的水平,有利于对这一复杂系统进行管理。在本研究中,我们调查了潜在的机器学习(ML)方法来预测 Chl-a 的水平。特别是,使用多达九个不同水质参数的目标数据集信息,评估了多层神经网络(MLNN)和支持向量回归(SVR)。使用包装式特征选择方法提取了最相关的输入组合,这些方法简化了模型的结构,从而得到更准确、更高效的程序。尽管验证阶段的性能表明 SVR 模型的结果优于 MLNN,但实验结果表明,两种 ML 算法在 Chl-a 浓度的预测中都提供了令人满意的结果,最佳拟合模型的交叉验证决定系数高达 0.7R。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3395/7068380/f83b93ab8d39/ijerph-17-01189-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验