Departamento de Ingeniería Civil: Hidráulica y Ordenación del Territorio ETSI Civil, Universidad Politécnica de Madrid Alfonso XII, 3, 28014 Madrid, Spain.
Departamento de Ingeniería Civil: Construcción, Infraestructura y Transporte ETSI Civil, Universidad Politécnica de Madrid Alfonso XII, 3, 28014 Madrid, Spain.
Int J Environ Res Public Health. 2022 Apr 9;19(8):4531. doi: 10.3390/ijerph19084531.
The Mar Menor is a Mediterranean coastal saltwater lagoon (Murcia, Spain) that represents a unique ecosystem of vital importance for the area, from both an economic and ecological point of view. During the last decades, the intense agricultural activity has caused episodes of eutrophication due to the contribution of inorganic nutrients, especially nitrates. For this reason, it is important to control the quality of the water discharged into the Mar Menor lagoon, which can be performed through the measurement of dissolved oxygen (DO). Therefore, this article aimed to predict the DO in the water discharged into this lagoon through the El Albujón watercourse, for which two theoretical models consisting of a multiple linear regression (MLR) and a back-propagation neural network (RPROP) were developed. Data of temperature, pH, nitrates, chlorides, sulphates, electrical conductivity, phosphates and DO at the mouth of this watercourse, between January 2014 and January 2021, were used. A preliminary statistical study was performed to discard the variables with the lowest influence on DO. Finally, both theoretical models were compared by means of the coefficient of determination (R), the root mean square errors (RMSE) and the mean absolute error (MAE), concluding that the neural network made a more accurate prediction of DO.
马略卡湖是一个地中海沿海盐水泻湖(西班牙穆尔西亚),从经济和生态的角度来看,它是一个具有重要意义的独特生态系统。在过去几十年中,由于无机养分(尤其是硝酸盐)的贡献,密集的农业活动导致了富营养化事件。因此,控制排入马略卡湖泻湖的水质非常重要,这可以通过测量溶解氧(DO)来实现。因此,本文旨在通过埃尔阿尔布琼水道预测排入该泻湖的水中的 DO,为此开发了两个理论模型,包括多元线性回归(MLR)和反向传播神经网络(RPROP)。使用了 2014 年 1 月至 2021 年 1 月期间该水道口的温度、pH 值、硝酸盐、氯化物、硫酸盐、电导率、磷酸盐和 DO 的数据。进行了初步的统计研究,以排除对 DO 影响最小的变量。最后,通过确定系数(R)、均方根误差(RMSE)和平均绝对误差(MAE)比较了这两个理论模型,得出神经网络对 DO 的预测更准确的结论。