Suppr超能文献

基于贝叶斯主动学习的基因调控网络高效结构学习

Efficient structure learning of gene regulatory networks with Bayesian active learning.

作者信息

Sándor Dániel, Antal Péter

机构信息

Department of Artificial Intelligence and Systems Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, 1111, Hungary.

出版信息

BMC Bioinformatics. 2025 Jun 3;26(1):150. doi: 10.1186/s12859-025-06149-6.

Abstract

BACKGROUND

Gene regulatory network modeling is a complex structure learning problem that involves both observational data analysis and experimental interventions. Bayesian causal discovery provides a principled framework for modeling observational data, generating posterior distributions that best represent the underlying structure. While recent algorithms offer efficient and accurate structure learning, integrating experiment design can further enhance predictive performance.

RESULTS

We introduce novel acquisition functions for experiment design in gene expression data, leveraging active learning in both Essential Graph and Graphical Model spaces. We evaluate scalable structure learning algorithms within an active learning framework to optimize intervention selection. Our study explores existing active learning strategies, adapts techniques from other domains to structure learning, and proposes a novel approach using Equivalence Class Entropy Sampling (ECES) and Equivalence Class BALD Sampling (EBALD). Using DREAM4's Gene Net Weaver and Sachs protein signaling data, we assess the effectiveness of different strategies in improving network learning.

CONCLUSION

Existing Bayesian experiment design strategies often overlook the Essential Graph structure, making inference more challenging due to the large number of possible graphs. Our results demonstrate that integrating active learning into structure learning algorithms can significantly improve performance, offering a scalable and effective approach for gene regulatory network discovery.

摘要

背景

基因调控网络建模是一个复杂的结构学习问题,涉及观测数据分析和实验干预。贝叶斯因果发现为观测数据建模提供了一个有原则的框架,生成最能代表潜在结构的后验分布。虽然最近的算法提供了高效且准确的结构学习,但整合实验设计可以进一步提高预测性能。

结果

我们为基因表达数据的实验设计引入了新颖的获取函数,在本质图和图形模型空间中利用主动学习。我们在主动学习框架内评估可扩展的结构学习算法,以优化干预选择。我们的研究探索了现有的主动学习策略,将其他领域的技术应用于结构学习,并提出了一种使用等价类熵采样(ECES)和等价类BALD采样(EBALD)的新方法。使用DREAM4的基因网络编织器和萨克斯蛋白质信号数据,我们评估了不同策略在改进网络学习方面的有效性。

结论

现有的贝叶斯实验设计策略往往忽略了本质图结构,由于可能的图数量众多,使得推理更具挑战性。我们的结果表明,将主动学习整合到结构学习算法中可以显著提高性能,为基因调控网络发现提供了一种可扩展且有效的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验