Suppr超能文献

通过主动学习重建因果生物网络。

Reconstructing Causal Biological Networks through Active Learning.

作者信息

Cho Hyunghoon, Berger Bonnie, Peng Jian

机构信息

Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, United States of America.

Department of Mathematics, MIT, Cambridge, MA, United States of America.

出版信息

PLoS One. 2016 Mar 1;11(3):e0150611. doi: 10.1371/journal.pone.0150611. eCollection 2016.

Abstract

Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs), which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments.

摘要

生物网络的逆向工程是系统生物学中的核心问题。干预数据的使用,如基因敲除或基因沉默,通常用于梳理基因之间的因果关系。在时间或资源受限的情况下,人们需要仔细选择进行哪些干预实验。以前选择最具信息性干预的方法主要集中在离散贝叶斯网络上。然而,连续贝叶斯网络具有很大的实际意义,特别是在复杂生物系统及其定量特性的研究中。在这项工作中,我们提出了一种用于高斯贝叶斯网络(GBN)的高效信息论主动学习算法,高斯贝叶斯网络是基因调控网络的重要模型。除了提供高斯贝叶斯网络特有的线性代数见解,从而显著提高运行时间外,我们还在使用高斯贝叶斯网络模拟的数据和DREAM4网络推理挑战数据集上证明了我们方法的有效性。与随机选择干预实验相比,我们的方法通常能更快地恢复潜在的网络结构,并更快地收敛到使用完整数据的候选图结构上的最终置信度分数分布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aec4/4773135/7b4d0b39b898/pone.0150611.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验