Suppr超能文献

基于超声直方图分析的涎腺多形性腺瘤基质亚型术前分类机器学习模型

Machine learning model for preoperative classification of stromal subtypes in salivary gland pleomorphic adenoma based on ultrasound histogram analysis.

作者信息

Su Huan-Zhong, Yang Dao-Hui, Hong Long-Cheng, Wu Yu-Hui, Yu Kun, Zhang Zuo-Bing, Zhang Xiao-Dong

机构信息

Department of Ultrasound, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.

The First Affiliated Hospital of Xiamen University, 55, Zhenhai Road, Siming District, Xiamen, 361003, China.

出版信息

BMC Oral Health. 2025 Jun 3;25(1):898. doi: 10.1186/s12903-025-06298-3.

Abstract

OBJECTIVES

Accurate preoperative discrimination of salivary gland pleomorphic adenoma (SPA) stromal subtypes is essential for therapeutic plannings. We aimed to establish and test machine learning (ML) models for classification of stromal subtypes in SPA based on ultrasound histogram analysis.

METHODS

A total of 256 SPA patients were enrolled in the study and categorized into two groups: stroma-low and stroma-high. The dataset was split into a training cohort with 177 patients and a validation cohort with 79 patients. The least absolute shrinkage and selection operator (LASSO) regression identified optimal features, which were then utilized to build predictive models using logistic regression (LR) and eight ML algorithms. The effectiveness of the models was evaluated using a range of performance metrics, with a particular focus on the area under the receiver operating characteristic curve (AUC).

RESULTS

After LASSO regression, six key features (lesion size, shape, cystic areas, vascularity, mean, and skewness) were selected to develop predictive models. The AUCs ranged from 0.575 to 0.827 for the nine models. The support vector machine (SVM) algorithm achieved the highest performance with an AUC of 0.827, accompanied by an accuracy of 0.798, precision of 0.792, recall of 0.862, and an F1 score of 0.826. The LR algorithm also exhibited robust performance, achieving an AUC of 0.818, slightly trailing behind the SVM algorithm. Decision curve analysis indicated that the SVM-based model provided superior clinical utility compared to other models.

CONCLUSIONS

The ML model based on ultrasound histogram analysis offers a precise and non-invasive approach for preoperative categorization of stromal subtypes in SPA.

摘要

目的

准确术前鉴别涎腺多形性腺瘤(SPA)的基质亚型对治疗方案规划至关重要。我们旨在基于超声直方图分析建立并测试用于SPA基质亚型分类的机器学习(ML)模型。

方法

共纳入256例SPA患者,分为两组:基质低组和基质高组。数据集被分为一个包含177例患者的训练队列和一个包含79例患者的验证队列。最小绝对收缩和选择算子(LASSO)回归确定了最佳特征,然后利用这些特征使用逻辑回归(LR)和八种ML算法构建预测模型。使用一系列性能指标评估模型的有效性,特别关注受试者操作特征曲线(AUC)下的面积。

结果

经过LASSO回归,选择了六个关键特征(病变大小、形状、囊性区域、血管分布、均值和偏度)来建立预测模型。九个模型的AUC范围为0.575至0.827。支持向量机(SVM)算法表现最佳,AUC为0.827,准确率为0.798,精确率为0.792,召回率为0.862,F1分数为0.826。LR算法也表现出稳健的性能,AUC为0.818,但略落后于SVM算法。决策曲线分析表明,基于SVM的模型比其他模型具有更好的临床实用性。

结论

基于超声直方图分析的ML模型为SPA基质亚型的术前分类提供了一种精确且无创的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验