Suppr超能文献

基于机器学习的预测肺结节高危预后病理成分的预后模型的开发与解读:整合临床特征、血清肿瘤标志物和影像特征

Development and interpretation of machine learning-based prognostic models for predicting high-risk prognostic pathological components in pulmonary nodules: integrating clinical features, serum tumor marker and imaging features.

作者信息

Wang Dingxin, Qiu Jianhao, Li Rongyang, Tian Hui

机构信息

Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.

Department of Thoracic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.

出版信息

J Cancer Res Clin Oncol. 2025 Jun 17;151(6):190. doi: 10.1007/s00432-025-06241-7.

Abstract

BACKGROUND

With the improvement of imaging, the screening rate of Pulmonary nodules (PNs) has further increased, but their identification of High-Risk Prognostic Pathological Components (HRPPC) is still a major challenge. In this study, we aimed to build a multi-parameter machine learning predictive model to improve the discrimination accuracy of HRPPC.

METHOD

This study included 816 patients with ≤ 3 cm pulmonary nodules with clear pathology and underwent pulmonary resection. High-resolution chest CT images, clinicopathological characteristics were collected from patients. Lasso regression was utilized in order to identify key features, and a machine learning prediction model was constructed based on the screened key features. The recognition ability of the prediction model was evaluated using (ROC) curves and confusion matrices. Model calibration ability was evaluated using calibration curves. Decision curve analysis (DCA) was used to evaluate the value of the model for clinical applications. Use SHAP values for interpreting predictive models.

RESULT

A total of 816 patients were included in this study, of which 112 (13.79%) had HRPPC of pulmonary nodules. By selecting key variables through Lasso recursive feature elimination, we finally identified 13 key relevant features. The XGB model performed the best, with an area under the ROC curve (AUC) of 0.930 (95% CI: 0.906-0.954) in the training cohort and 0.835 (95% CI: 0.774-0.895) in the validation cohort, indicating that the XGB model had excellent predictive performance. In addition, the calibration curves of the XGB model showed good calibration in both cohorts. DCA demonstrated that the predictive model had a positive benefit in general clinical decision-making. The SHAP values identified the top 3 predictors affecting the HRPPC of PNs as CT Value, Nodule Long Diameter, and PRO-GRP.

CONCLUSION

Our prediction model for identifying HRPPC in PNs has excellent discrimination, calibration and clinical utility. Thoracic surgeons could make relatively reliable predictions of HRPPC in PNs without the possibility of invasive testing.

摘要

背景

随着影像学技术的进步,肺结节(PNs)的筛查率进一步提高,但其高危预后病理成分(HRPPC)的识别仍是一项重大挑战。在本研究中,我们旨在构建一个多参数机器学习预测模型,以提高HRPPC的判别准确性。

方法

本研究纳入了816例肺结节直径≤3 cm且病理明确并接受肺切除术的患者。收集患者的高分辨率胸部CT图像和临床病理特征。利用套索回归识别关键特征,并基于筛选出的关键特征构建机器学习预测模型。使用受试者工作特征(ROC)曲线和混淆矩阵评估预测模型的识别能力。使用校准曲线评估模型校准能力。采用决策曲线分析(DCA)评估模型在临床应用中的价值。使用SHAP值解释预测模型。

结果

本研究共纳入816例患者,其中112例(13.79%)肺结节具有HRPPC。通过套索递归特征消除选择关键变量,最终确定了13个关键相关特征。XGB模型表现最佳,在训练队列中的ROC曲线下面积(AUC)为0.930(95%CI:0.906 - 0.954),在验证队列中为0.835(95%CI:0.774 - 0.895),表明XGB模型具有出色的预测性能。此外,XGB模型的校准曲线在两个队列中均显示出良好的校准效果。DCA表明预测模型在一般临床决策中具有积极效益。SHAP值确定影响PNs的HRPPC的前3个预测因子为CT值、结节长径和PRO - GRP。

结论

我们用于识别PNs中HRPPC的预测模型具有出色的判别、校准和临床实用性。胸外科医生无需进行侵入性检测即可对PNs中的HRPPC做出相对可靠的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67d9/12170801/54807a247b56/432_2025_6241_Fig4_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验