Suppr超能文献

利用AlphaFold2预测结构和表面特征的多模态几何学习用于抗菌肽鉴定

Multimodal geometric learning for antimicrobial peptide identification by leveraging alphafold2-predicted structures and surface features.

作者信息

Sun Zehua, Xu Jing, Zhang Yumeng, Zhang Yiwen, Wang Zhikang, Wang Xiaoyu, Li Shanshan, Guo Yuming, Shen Hsin Hui, Song Jiangning

机构信息

Department of Materials Science and Engineering, Faculty of Engineering, Monash University, 20 Research Way, New Horizons, Clayton, Victoria 3800, Australia.

Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, Melbourne, VIC 3800, Australia.

出版信息

Brief Bioinform. 2025 May 1;26(3). doi: 10.1093/bib/bbaf261.

Abstract

Antimicrobial peptides (AMPs) are short peptides that play critical roles in diverse biological processes and exhibit functional activities against target organisms. While numerous methods have demonstrated the effectiveness of deep neural networks for AMP identification using sequence features; nevertheless, higher-level peptide characteristics-such as 3D structure and geometric surface features-have not been comprehensively explored. To address this gap, we introduce the SSFGM-Model (Sequence, Structure, Surface, Graph, and Geometric-based Model), a novel framework that integrates multiple feature types to enhance AMP identification. The model represents each peptide sequence as a graph, where nodes are characterized by amino acid features derived from ProteinBERT, ESM-2, and One-hot embeddings. Graph convolutional networks and an attention mechanism are employed to capture high-order structural and sequential relationships. Additionally, surface geometry and physicochemical properties are processed using a geometric neural network. Finally, a feature fusion strategy combines the outputs from these subnetworks to enable robust AMP identification. Extensive benchmarking experiments demonstrate that the SSFGM-Model outperforms current state-of-the-art methods. An ablation study further confirms the critical role of sequence, structural, and surface features in AMP identification. The key contribution of this work is the innovative integration of multiple levels of peptide characteristics and the combination of geometric and graph neural networks. This approach provides a more comprehensive understanding of the sequence-structure-function relationship of peptides, paving the way for more accurate AMP prediction. The SSFGM-Model has a significant potential for applications in the discovery and design of novel AMP-based therapeutics. The source code is publicly available at https://github.com/ggcameronnogg/SSFGM-Model.

摘要

抗菌肽(AMPs)是短肽,在多种生物过程中发挥关键作用,并对目标生物体表现出功能活性。虽然许多方法已经证明了深度神经网络利用序列特征进行AMPs识别的有效性;然而,更高层次的肽特征,如三维结构和几何表面特征,尚未得到全面探索。为了弥补这一差距,我们引入了SSFGM模型(基于序列、结构、表面、图和几何的模型),这是一个整合多种特征类型以增强AMPs识别的新颖框架。该模型将每个肽序列表示为一个图,其中节点由源自ProteinBERT、ESM-2和独热嵌入的氨基酸特征表征。图卷积网络和注意力机制用于捕捉高阶结构和序列关系。此外,使用几何神经网络处理表面几何和物理化学性质。最后,一种特征融合策略将这些子网络的输出结合起来,以实现强大的AMPs识别。广泛的基准实验表明,SSFGM模型优于当前最先进的方法。消融研究进一步证实了序列、结构和表面特征在AMPs识别中的关键作用。这项工作的关键贡献在于对多个层次的肽特征进行创新整合,以及几何和图神经网络的结合。这种方法为肽的序列-结构-功能关系提供了更全面的理解,为更准确的AMPs预测铺平了道路。SSFGM模型在基于AMPs的新型治疗药物的发现和设计中具有巨大的应用潜力。源代码可在https://github.com/ggcameronnogg/SSFGM-Model上公开获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验