Suppr超能文献

基于结构感知的深度学习模型用于预测肽毒性。

Structure-aware deep learning model for peptide toxicity prediction.

机构信息

Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada.

Bioinformatics Graduate Program, University of British Columbia, Vancouver, British Columbia, Canada.

出版信息

Protein Sci. 2024 Jul;33(7):e5076. doi: 10.1002/pro.5076.

Abstract

Antimicrobial resistance is a critical public health concern, necessitating the exploration of alternative treatments. While antimicrobial peptides (AMPs) show promise, assessing their toxicity using traditional wet lab methods is both time-consuming and costly. We introduce tAMPer, a novel multi-modal deep learning model designed to predict peptide toxicity by integrating the underlying amino acid sequence composition and the three-dimensional structure of peptides. tAMPer adopts a graph-based representation for peptides, encoding ColabFold-predicted structures, where nodes represent amino acids and edges represent spatial interactions. Structural features are extracted using graph neural networks, and recurrent neural networks capture sequential dependencies. tAMPer's performance was assessed on a publicly available protein toxicity benchmark and an AMP hemolysis data we generated. On the latter, tAMPer achieves an F1-score of 68.7%, outperforming the second-best method by 23.4%. On the protein benchmark, tAMPer exhibited an improvement of over 3.0% in the F1-score compared to current state-of-the-art methods. We anticipate tAMPer to accelerate AMP discovery and development by reducing the reliance on laborious toxicity screening experiments.

摘要

抗药性是一个严重的公共卫生问题,需要探索替代疗法。虽然抗菌肽(AMPs)显示出了前景,但使用传统的湿实验室方法评估其毒性既耗时又昂贵。我们引入了 tAMPer,这是一种新的多模态深度学习模型,旨在通过整合潜在的氨基酸序列组成和肽的三维结构来预测肽毒性。tAMPer 采用基于图的肽表示,编码 ColabFold 预测的结构,其中节点代表氨基酸,边缘代表空间相互作用。使用图神经网络提取结构特征,递归神经网络捕获序列依赖性。我们在一个公开的蛋白质毒性基准和我们生成的 AMP 溶血数据上评估了 tAMPer 的性能。在后一种情况下,tAMPer 的 F1 得分为 68.7%,比第二好的方法高出 23.4%。在蛋白质基准上,tAMPer 的 F1 得分与当前最先进的方法相比提高了 3.0%以上。我们预计 tAMPer 将通过减少对费力的毒性筛选实验的依赖,加速 AMP 的发现和开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b2/11193153/dab4015bdfb7/PRO-33-e5076-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验