Goldberga Ieva, Chanal Trevys, Georges Tristan, Laurent Guillaume P, Azaïs Thierry
Sorbonne Université, CNRS, Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France.
Faraday Discuss. 2025 Sep 11;261(0):99-115. doi: 10.1039/d5fd00032g.
Crystallization is a fundamental process in biomineralization, yet its complexity increases significantly in non-classical pathways of nucleation and growth, where numerous intermediates exist between free ions in solution and the final crystalline phase. Characterization of such intermediates can be delicate, as some processes can proceed very fast, inducing a short temporal window for their characterization. The problem is particularly true for the so-called prenucleation species, for which this difficulty is made worse due to their solubility, nanometric size and highly dynamic nature. In this communication, we introduce an innovative approach based on the "trapping" of reactive intermediates in a vitreous matrix, inspired by cryo-TEM sample preparation but adapted specifically to solid-state NMR characterization. This approach enables time-resolved analysis, since the aging time of the mineralization reaction is controlled on the millisecond time-scale using a dedicated stopped-flow device. The cryo-fixation is achieved by spraying the reacting solution into cold liquid isopentane at -145 °C, and the NMR rotors are filled with specifically designed packing tools, ensuring the control of the low temperature during the whole process. Finally, the cryo-fixed solution can be studied low-temperature solid-state NMR by acquiring time-resolved NMR spectra as snapshots of the ongoing reaction. First, we show that phosphate solutions can be efficiently vitrified using this protocol and studied low-temperature P solid-state NMR at -120 °C. We demonstrate that the P chemical-shift interaction of cryo-quenched solutions varies with the pH, allowing us to distinguish the different phosphate species coexisting in solution (PO, HPO, HPOand HPO) based on their chemical shift anisotropy patterns, which are characteristic of their protonation degree. The determination of the proportion of each species at varying pH levels enables us to construct a speciation diagram under our experimental conditions. We observe that the "apparent p" values, , the pH values for each chemical equilibrium, are slightly influenced by the low temperature, and possibly by the preparation conditions. Finally, we demonstrate that our method can be applied to study fast calcium phosphate crystallization, revealing the early stages of amorphous calcium phosphate (ACP) nucleation within just 20 ms of reaction time, as shown by P ssNMR. Importantly, the described methodology is the first step towards studying fast out-of-equilibrium solutions through trapping and then studying transient intermediate species solid-state NMR. Indeed, proper freeze-quenching prevents the transient species from transforming and preserves their native environment, such as hydration, pH, or ionic strength. We demonstrated applications for biomineralization-relevant reactions, but in principle, any aqueous reaction can be studied.
结晶是生物矿化中的一个基本过程,然而在非经典的成核和生长途径中,其复杂性显著增加,在溶液中的游离离子和最终晶相之间存在众多中间体。表征这些中间体可能很棘手,因为有些过程进展非常快,为其表征带来的时间窗口很短。对于所谓的预成核物种来说,这个问题尤其突出,由于它们的溶解性、纳米尺寸和高度动态的性质,使得这一困难更加严重。在本通讯中,我们引入了一种基于将反应中间体“捕获”在玻璃基质中的创新方法,该方法受低温透射电子显微镜(cryo-TEM)样品制备的启发,但专门适用于固态核磁共振(NMR)表征。这种方法能够进行时间分辨分析,因为使用专用的停流装置可在毫秒时间尺度上控制矿化反应的老化时间。通过将反应溶液喷入-145°C的冷液态异戊烷中来实现冷冻固定,并且NMR转子用专门设计的填充工具填充,确保在整个过程中控制低温。最后,通过获取作为正在进行反应的快照的时间分辨NMR谱,可以在低温固态NMR下研究冷冻固定的溶液。首先,我们表明使用该方案可以有效地将磷酸盐溶液玻璃化,并在-120°C下进行低温磷固态NMR研究。我们证明冷冻淬灭溶液的磷化学位移相互作用随pH值变化,这使我们能够根据其化学位移各向异性模式区分溶液中共存的不同磷酸盐物种(PO、HPO、HPO和HPO),这些模式是它们质子化程度的特征。确定不同pH水平下每种物种的比例使我们能够构建我们实验条件下的物种形成图。我们观察到“表观p”值,即每个化学平衡的pH值,受低温以及可能的制备条件的轻微影响。最后,我们证明我们的方法可用于研究快速磷酸钙结晶,如磷固态核磁共振所示,在仅20毫秒的反应时间内揭示了无定形磷酸钙(ACP)成核的早期阶段。重要的是,所描述的方法是通过捕获然后在固态NMR下研究瞬态中间物种来研究快速非平衡溶液的第一步。实际上,适当的冷冻淬灭可防止瞬态物种转变并保留其原生环境,如水合作用、pH值或离子强度。我们展示了其在与生物矿化相关反应中的应用,但原则上,任何水相反应都可以研究。