Suppr超能文献

药物与单细胞基因表达整合鉴定出敏感和耐药的胶质母细胞瘤细胞群体。

DRUG AND SINGLE-CELL GENE EXPRESSION INTEGRATION IDENTIFIES SENSITIVE AND RESISTANT GLIOBLASTOMA CELL POPULATIONS.

作者信息

Suter Robert K, Jermakowicz Anna M, Veeramachaneni Rithvik, D'Antuono Matthew, Zhang Longwei, Chowdary Rishika, Kaeppeli Simon, Sharp Madison, Palwai Pravallika, Stathias Vasileios, Baker Grace, Ruiz Luz, Walters Winston, Cepero Maria, Burgenske Danielle, Reilly Edward B, Oleksijew Anatol, Anderson Mark G, Williams Sion Ll, Ivan Michael E, Komotar Ricardo J, De La Fuente Macarena I, Stein Gregory, Wojcinski Alexander, Kesari Santosh, Sarkaria Jann N, Schürer Stephan C, Ayad Nagi G

机构信息

Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.

Corresponding Author.

出版信息

bioRxiv. 2025 May 15:2025.05.15.654044. doi: 10.1101/2025.05.15.654044.

Abstract

Glioblastoma (GBM) remains the most common and lethal adult malignant primary brain cancer with few treatment options. A significant issue hindering GBM therapeutic development is intratumor heterogeneity. GBM tumors contain neoplastic cells within a spectrum of different transcriptional states. Identifying effective therapeutics requires a platform that predicts the differential sensitivity and resistance of these states to various treatments. Here, we developed a novel framework, ISOSCELES (Inferred cell Sensitivity Operating on the integration of Single-Cell Expression and L1000 Expression Signatures), to quantify the cellular drug sensitivity and resistance landscape. Using single-cell RNA sequencing of newly diagnosed and recurrent GBM tumors, we identified compounds from the LINCS L1000 database with transcriptional response signatures selectively discordant with distinct GBM cell states. We validated the significance of these findings and , and identified a novel combination of an OLIG2 inhibitor and Depatux-M for GBM. Our studies suggest that ISOSCELES identifies cell states sensitive and resistant to targeted therapies in GBM and that it can be applied to identify new synergistic combinations.

摘要

胶质母细胞瘤(GBM)仍然是最常见且致命的成人原发性恶性脑癌,治疗选择有限。阻碍GBM治疗发展的一个重要问题是肿瘤内异质性。GBM肿瘤在一系列不同的转录状态中包含肿瘤细胞。确定有效的治疗方法需要一个能够预测这些状态对各种治疗的差异敏感性和耐药性的平台。在此,我们开发了一个新的框架,即ISOSCELES(基于单细胞表达和L1000表达特征整合推断细胞敏感性),以量化细胞药物敏感性和耐药性情况。通过对新诊断和复发性GBM肿瘤进行单细胞RNA测序,我们从LINCS L1000数据库中鉴定出与不同GBM细胞状态具有选择性不一致转录反应特征的化合物。我们验证了这些发现的重要性,并确定了一种用于GBM的OLIG2抑制剂和Depatux-M的新组合。我们的研究表明,ISOSCELES可识别GBM中对靶向治疗敏感和耐药的细胞状态,并且可用于识别新的协同组合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/829f/12132552/86846611928e/nihpp-2025.05.15.654044v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验