Abebe Haftom Temesgen, Siraj Amir, Berhane Kiros, Siraj Dawd, Van Breukelen Gerard J P
Department of Biostatistics, Mekelle University College of Health Sciences, Mekelle, Tigray, Ethiopia.
Laboratory Interdisciplinary Statistical Data Analysis, Mekelle University College of Health Sciences, Mekelle, Tigray, Ethiopia.
Infect Drug Resist. 2025 May 30;18:2717-2729. doi: 10.2147/IDR.S501934. eCollection 2025.
In the early twenty-first century, humanity faced life-threatening infectious diseases, primarily caused by zoonotic pathogens, such as Ebola, Influenza, Middle East Respiratory Syndrome Coronavirus and Severe Acute Respiratory Syndrome Coronavirus. Early warnings based on epidemic models are crucial for preventing and controlling outbreaks. However, most decisions rely on expert opinions rather than robust epidemic model outputs. Implementing epidemic models can be challenging without a strong background in statistical modeling.
This paper presents a simple, user-friendly tool in MATLAB to predict the time course of an infectious disease outbreak using various modified epidemic models. These models incorporate key non-pharmaceutical interventions to limit transmission within communities. Additionally, we introduce improved epidemiological model structures for outbreak control and prevention. To demonstrate the application of our interactive program and discuss user decision-making, we provide an example using key parameters from recent studies. The simulation model was run with varying scenarios, adjusting the effectiveness and coverage of social distancing, hand washing, and face mask usage.
Without any intervention, 99.6% of the population could be infected within 100 days. Combining social distancing with 80% coverage of face masks and hand washing reduced transmission and death by 99.96% and 99.98%, respectively, compared to no preventive measures.
This interactive computer program aids epidemiologists, public health experts, and decision-makers in understanding and predicting infectious transmission. It is also valuable for generating rapid reports on infectious diseases and outbreak responses where time is a critical. Furthermore, it enhances collaboration between public health stakeholders and modeling professionals, aiming to optimize disease prevention and control strategies during outbreaks or epidemics.
在21世纪初,人类面临着危及生命的传染病,主要由人畜共患病原体引起,如埃博拉病毒、流感病毒、中东呼吸综合征冠状病毒和严重急性呼吸综合征冠状病毒。基于流行模型的早期预警对于预防和控制疫情爆发至关重要。然而,大多数决策依赖于专家意见而非可靠的流行模型输出。在没有强大统计建模背景的情况下实施流行模型可能具有挑战性。
本文介绍了一种在MATLAB中简单易用的工具,用于使用各种改进的流行模型预测传染病爆发的时间进程。这些模型纳入了关键的非药物干预措施,以限制社区内的传播。此外,我们引入了用于疫情控制和预防的改进流行病学模型结构。为了演示我们交互式程序的应用并讨论用户决策,我们提供了一个使用近期研究关键参数的示例。模拟模型在不同场景下运行,调整社交距离、洗手和使用口罩的有效性和覆盖率。
在没有任何干预的情况下,99.6%的人口可能在100天内被感染。与不采取预防措施相比,将社交距离与80%的口罩覆盖率和洗手相结合,分别将传播和死亡降低了99.96%和99.98%。
这个交互式计算机程序有助于流行病学家、公共卫生专家和决策者理解和预测传染病传播。在时间紧迫的情况下,它对于生成关于传染病和疫情应对的快速报告也很有价值。此外,它加强了公共卫生利益相关者和建模专业人员之间的合作,旨在在疫情爆发或流行期间优化疾病预防和控制策略。