文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

2型糖尿病患者糖尿病视网膜病变中广泛的动态功能网络连接改变

Extensive Dynamic Functional Network Connectivity Alterations in Diabetic Retinopathy Among Patients with Type 2 Diabetes.

作者信息

Liu Hao, Gu Zheng-Xue, Li Xiao-Tong, Huang Xin

机构信息

School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China.

Department of Radiology, Nanjing Central Hospital, Nanjing, People's Republic of China.

出版信息

Diabetes Metab Syndr Obes. 2025 May 30;18:1823-1835. doi: 10.2147/DMSO.S501849. eCollection 2025.


DOI:10.2147/DMSO.S501849
PMID:40463495
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12132520/
Abstract

BACKGROUND: Diabetic retinopathy (DR) is a prevalent microvascular complication of diabetes. Prior neuroimaging research has indicated that patients with DR exhibit diverse levels of disrupted brain function alongside a variety of ocular symptoms. Nevertheless, past investigations have predominantly focused on static brain activity changes, leaving uncertainties regarding the modifications in dynamic large-scale brain networks among DR patients. PURPOSE: The aim of this study was to investigate the alterations in dynamic large-scale functional network connectivity in DR patients and its medical significance. METHODS: Forty-six patients with DR (type 2 diabetes mellitus) and 46 healthy controls, matched for age, gender, and education level, were enrolled in this study. Initial application of Independent Component Analysis (ICA) methods was used to extract the resting state network (RSN) from resting state functional magnetic resonance imaging (fMRI) data. Subsequently, sliding time window and k-means cluster analysis were employed to derive five stable repetitions of the dynamic functional network connectivity (dFNC) states and compare the differences in dFNC between the two cohorts for each state. Finally, the study investigated between-group variances in three dynamic temporal metrics. RESULTS: Significant between-group differences in dFNC were observed in states 1 and 2. Patients with DR, compared to healthy controls, exhibited reduced functional connectivity within the visual network (VN) and between the dorsal attention network (DAN) and VN, coupled with higher functional connectivity between the default mode network (DMN) and VN, cerebellum network (CN) and VN, and DMN-executive control network (ECN). Regarding the three dynamic temporal metrics, the study findings indicated that DR patients experienced a notable decline in the fraction of time and mean dwell time in state 1, while showing an increase in these metrics for state 3. CONCLUSION: Our study reveals extensive dynamic functional network connectivity alterations among patients with DR, potentially linked to visual impairment and cognitive deficits. These discoveries offer valuable insights into the neural mechanisms that drive changes in dynamic large-scale brain networks in individuals with DR.

摘要

背景:糖尿病视网膜病变(DR)是糖尿病常见的微血管并发症。先前的神经影像学研究表明,DR患者除了有各种眼部症状外,还表现出不同程度的脑功能紊乱。然而,过去的研究主要集中在静态脑活动变化上,对于DR患者动态大规模脑网络的改变仍存在不确定性。 目的:本研究旨在探讨DR患者动态大规模功能网络连接的改变及其医学意义。 方法:本研究纳入了46例DR(2型糖尿病)患者和46名年龄、性别和教育水平相匹配的健康对照者。最初应用独立成分分析(ICA)方法从静息态功能磁共振成像(fMRI)数据中提取静息态网络(RSN)。随后,采用滑动时间窗和k均值聚类分析得出动态功能网络连接(dFNC)状态的五个稳定重复,并比较两组在每个状态下dFNC的差异。最后,研究调查了三个动态时间指标的组间差异。 结果:在状态1和状态2中观察到dFNC存在显著的组间差异。与健康对照者相比,DR患者在视觉网络(VN)内以及背侧注意网络(DAN)和VN之间的功能连接减少,同时默认模式网络(DMN)和VN、小脑网络(CN)和VN以及DMN-执行控制网络(ECN)之间的功能连接增加。关于三个动态时间指标,研究结果表明,DR患者在状态1的时间分数和平均停留时间显著下降,而在状态3中这些指标有所增加。 结论:我们的研究揭示了DR患者中广泛的动态功能网络连接改变,可能与视力损害和认知缺陷有关。这些发现为驱动DR个体动态大规模脑网络变化的神经机制提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11c5/12132520/e7317b28aa68/DMSO-18-1823-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11c5/12132520/8cb7ff31ed8d/DMSO-18-1823-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11c5/12132520/bea83695e351/DMSO-18-1823-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11c5/12132520/4cbf97e1f0e2/DMSO-18-1823-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11c5/12132520/e7317b28aa68/DMSO-18-1823-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11c5/12132520/8cb7ff31ed8d/DMSO-18-1823-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11c5/12132520/bea83695e351/DMSO-18-1823-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11c5/12132520/4cbf97e1f0e2/DMSO-18-1823-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11c5/12132520/e7317b28aa68/DMSO-18-1823-g0004.jpg

相似文献

[1]
Extensive Dynamic Functional Network Connectivity Alterations in Diabetic Retinopathy Among Patients with Type 2 Diabetes.

Diabetes Metab Syndr Obes. 2025-5-30

[2]
Altered Static and Dynamic Functional Network Connectivity and Combined Machine Learning in Stroke.

Brain Topogr. 2025-1-9

[3]
Specific static and dynamic functional network connectivity changes in thyroid-associated ophthalmopathy and it predictive values using machine learning.

Front Neurosci. 2024-8-23

[4]
Aberrant static and dynamic functional network connectivity in patients with noise-induced hearing loss.

Quant Imaging Med Surg. 2025-5-1

[5]
Altered static and dynamic functional network connectivity in post-traumatic headache.

J Headache Pain. 2021-11-13

[6]
Aberrant modulations of static functional connectivity and dynamic functional network connectivity in chronic migraine.

Quant Imaging Med Surg. 2021-6

[7]
Dynamic connectivity patterns of resting-state brain functional networks in healthy individuals after acute alcohol intake.

Front Neurosci. 2022-9-20

[8]
Aberrant dynamic functional network connectivity in progressive supranuclear palsy.

Neurobiol Dis. 2024-6-1

[9]
Altered static and dynamic functional network connectivity in individuals with subthreshold depression: a large-scale resting-state fMRI study.

Eur Arch Psychiatry Clin Neurosci. 2024-7-24

[10]
Large-Scale Neuronal Network Dysfunction in Diabetic Retinopathy.

Neural Plast. 2020

本文引用的文献

[1]
Novel Insights into Diabetic Kidney Disease.

Int J Mol Sci. 2024-9-23

[2]
A longitudinal multimodal MRI study of the visual network in postoperative delirium.

Brain Imaging Behav. 2024-12

[3]
Progress in the Pathogenesis of Diabetic Encephalopathy: The Key Role of Neuroinflammation.

Diabetes Metab Res Rev. 2024-9

[4]
Specific static and dynamic functional network connectivity changes in thyroid-associated ophthalmopathy and it predictive values using machine learning.

Front Neurosci. 2024-8-23

[5]
Altered dynamic large-scale brain networks and combined machine learning in primary angle-closure glaucoma.

Neuroscience. 2024-10-18

[6]
Diabetic retinopathy: New concepts of screening, monitoring, and interventions.

Surv Ophthalmol. 2024

[7]
Top-down generation of low-resolution representations improves visual perception and imagination.

Neural Netw. 2024-3

[8]
Diabetic retinopathy in the pediatric population: Pathophysiology, screening, current and future treatments.

Pharmacol Res. 2023-2

[9]
Disrupted network integration and segregation involving the default mode network in autism spectrum disorder.

J Affect Disord. 2023-2-15

[10]
Abnormal static and dynamic functional network connectivity in stable chronic obstructive pulmonary disease.

Front Aging Neurosci. 2022-10-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索