Pardos Jorge, García-Martínez Adrián, Ruiz-Pernía J Javier, Tuñón Iñaki
Departamento de Química Física, Universidad de Valencia, 46100 Burjassot, Spain.
ACS Catal. 2025 Feb 28;15(6):4415-4428. doi: 10.1021/acscatal.5c00719. eCollection 2025 Mar 21.
We present a systematic evaluation of different possible reaction mechanisms for GTP hydrolysis in RhoA, a member of the Ras superfamily of enzymes that uses this reaction to switch from an active to an inactive conformation. These enzymes are activated by the presence of a GTPase activating protein (or GAP) that forms an intimate complex with residues of the two proteins present in the active site. We have explored the multidimensional reactional free energy landscape in the active site of the complex formed by RhoA and p50RhoGAP. Our molecular dynamics simulations show that the activating enzyme p50RhoGAP establishes catalytically important interactions with the phosphate groups of GTP through its so-called arginine finger (Arg85) and also with the RhoA residue Gln63. This is a key residue because it not only interacts with the nucleophilic water molecule but also participates actively in the reaction mechanism. Adaptive string method simulations using hybrid quantum mechanics/molecular mechanics (QM/MM) potentials with both tight-binding and density functional Hamiltonians show that GTP hydrolysis proceeds through the formation of a metaphosphate metastable species. Mechanistic proposals differ in the proton transfer rearrangements required to form the inorganic phosphate ion. Our simulations discard a solvent-assisted mechanism and point to the participation of Gln63 in the proton transfer process by means of the side chain tautomerism from the amide to the imide form. The proton transfer required to recover the amide form of Gln63 requires the participation of the inorganic phosphate, and it is the rate-limiting step of the process, with a free energy barrier of 20.2 kcal mol at the B3LYPD3/MM level, in good agreement with the experimentally derived value. The amide-imide tautomerism could also be relevant in other enzymes, facilitating proton transfer events in complex mechanisms.
我们对RhoA中GTP水解的不同可能反应机制进行了系统评估,RhoA是Ras超家族酶的一员,利用该反应从活性构象转变为非活性构象。这些酶通过与活性位点中存在的两种蛋白质的残基形成紧密复合物的GTPase激活蛋白(或GAP)的存在而被激活。我们探索了由RhoA和p50RhoGAP形成的复合物活性位点中的多维反应自由能景观。我们的分子动力学模拟表明,激活酶p50RhoGAP通过其所谓的精氨酸指(Arg85)与GTP的磷酸基团以及RhoA残基Gln63建立了催化重要的相互作用。这是一个关键残基,因为它不仅与亲核水分子相互作用,还积极参与反应机制。使用具有紧束缚和密度泛函哈密顿量的混合量子力学/分子力学(QM/MM)势的自适应弦方法模拟表明,GTP水解通过亚磷酸亚稳物种的形成进行。在形成无机磷酸根离子所需的质子转移重排方面,不同的机理提议存在差异。我们的模拟排除了溶剂辅助机制,并指出Gln63通过从酰胺形式到酰亚胺形式的侧链互变异构参与质子转移过程。恢复Gln63酰胺形式所需的质子转移需要无机磷酸的参与,这是该过程的限速步骤,在B3LYPD3/MM水平下自由能垒为20.2 kcal mol,与实验得出的值高度一致。酰胺 - 酰亚胺互变异构在其他酶中也可能相关,有助于复杂机制中的质子转移事件。