文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

从基础到临床的转化:光动力纳米药物的进展与展望

From basic to clinical translation: advances and perspectives of photodynamic nanodrugs.

作者信息

Ma Shitang, Shi Shasha, Hu Xin, Zhao Ye, Yang Boran, Liao Maoliang, Lu Baowei, Xu Qilin

机构信息

College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China.

Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.

出版信息

Front Pharmacol. 2025 May 20;16:1606372. doi: 10.3389/fphar.2025.1606372. eCollection 2025.


DOI:10.3389/fphar.2025.1606372
PMID:40463906
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12129894/
Abstract

Photodynamic nanodrugs (PDNS) have demonstrated significant advantages in enhancing therapeutic outcomes while reducing systemic toxicity, achieved primarily through optimized photosensitizer solubility, targeted biodistribution, and site-specific accumulation. This review systematically examines recent progress and future directions of PDNS development, encompassing fundamental research to clinical translation. Specifically, it analyzes the composition, mechanisms of action, inherent advantages, clinical applications, as well as the challenges faced in this domain. The introduction of nanocarriers has circumvented the limitations of the core photosensitizers, substantially enhancing the efficacy and safety of PDNS via targeted delivery and synergistic therapy. Moreover, the integration of stimuli-responsive and multifunctional nanoplatforms has further improved the spatiotemporal control of reactive oxygen species (ROS) generation, thereby minimizing off-target effects. In addition, the combination of PDNS with immunotherapy has exhibited synergistic effects, underscoring the potential of this integrated approach. PDNS has made remarkable progress in cancer treatment through receptor-mediated endocytosis, self-assembly, and precise targeting. Beyond cancer treatment, PDNS holds considerable promise in treating a diverse array of non-oncological diseases, such as acne, psoriasis, dry eye disease, and cardiovascular disorders, et al. In this regard, PDNS has emerged as a pivotal component within the realm of personalized medicine. Despite these notable advancements, challenges persist in optimizing drug delivery and achieving efficient clinical translation. Looking ahead, future perspectives encompass the development of highly efficient photosensitizers and ensuring accurate nanocarrier delivery, which will undoubtedly facilitate the progress of PDNS in the clinical application field.

摘要

光动力纳米药物(PDNS)在提高治疗效果的同时降低全身毒性方面已显示出显著优势,这主要通过优化光敏剂的溶解度、靶向生物分布和位点特异性积累来实现。本综述系统地研究了PDNS开发的最新进展和未来方向,涵盖从基础研究到临床转化的各个方面。具体而言,它分析了PDNS的组成、作用机制、固有优势、临床应用以及该领域面临的挑战。纳米载体的引入克服了核心光敏剂的局限性,通过靶向递送和协同治疗大幅提高了PDNS的疗效和安全性。此外,刺激响应和多功能纳米平台的整合进一步改善了活性氧(ROS)生成的时空控制,从而将脱靶效应降至最低。此外,PDNS与免疫疗法的联合已显示出协同效应,突出了这种综合方法的潜力。PDNS通过受体介导的内吞作用、自组装和精确靶向在癌症治疗方面取得了显著进展。除癌症治疗外,PDNS在治疗多种非肿瘤性疾病方面也具有巨大潜力,如痤疮、银屑病、干眼症和心血管疾病等。在这方面,PDNS已成为个性化医疗领域的关键组成部分。尽管取得了这些显著进展,但在优化药物递送和实现高效临床转化方面仍存在挑战。展望未来,未来的发展方向包括开发高效光敏剂和确保纳米载体的准确递送,这无疑将推动PDNS在临床应用领域的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf0c/12129894/948228742fd9/fphar-16-1606372-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf0c/12129894/6f51a6f29fb2/fphar-16-1606372-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf0c/12129894/e52934e67982/fphar-16-1606372-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf0c/12129894/a248bc364c1e/fphar-16-1606372-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf0c/12129894/948228742fd9/fphar-16-1606372-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf0c/12129894/6f51a6f29fb2/fphar-16-1606372-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf0c/12129894/e52934e67982/fphar-16-1606372-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf0c/12129894/a248bc364c1e/fphar-16-1606372-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf0c/12129894/948228742fd9/fphar-16-1606372-g004.jpg

相似文献

[1]
From basic to clinical translation: advances and perspectives of photodynamic nanodrugs.

Front Pharmacol. 2025-5-20

[2]
Advancing Cancer Treatment: Innovative Materials in PDT and Diagnostic Integration.

Int J Nanomedicine. 2025-5-31

[3]
Antibody-modified Gold Nanobiostructures: Advancing Targeted Photodynamic Therapy for Improved Cancer Treatment.

Curr Pharm Des. 2023

[4]
Innovative approaches for cancer treatment: graphene quantum dots for photodynamic and photothermal therapies.

J Mater Chem B. 2024-5-8

[5]
Advancements in Nanocarrier Delivery Systems for Photodynamic Therapy in Lung Cancer.

Int J Nanomedicine. 2025-5-29

[6]
Photodynamic PEG-coated ROS-sensitive prodrug nanoassemblies for core-shell synergistic chemo-photodynamic therapy.

Acta Biomater. 2019-5-9

[7]
Orchestrating cancer therapy: Recent advances in nanoplatforms harmonize immunotherapy with multifaceted treatments.

Mater Today Bio. 2024-12-9

[8]
Advancements in colorectal cancer treatment: The role of metal-based and inorganic nanoparticles in modern therapeutic approaches.

Pathol Res Pract. 2024-12

[9]
Supramolecular micelles as multifunctional theranostic agents for synergistic photodynamic therapy and hypoxia-activated chemotherapy.

Acta Biomater. 2021-9-1

[10]
Advanced Palladium Nanosheet-Enhanced Phototherapy for Treating Wound Infection Caused by Multidrug-Resistant Bacteria.

Small. 2025-2

本文引用的文献

[1]
Intratumoral injection of two dosage forms of paclitaxel nanoparticles combined with photothermal therapy for breast cancer.

Chin Herb Med. 2024-6-20

[2]
Traditional Chinese herbal medicine in European Union: State of art, challenges, and future perspectives focusing on Italian market.

Chin Herb Med. 2024-11-26

[3]
Carrier-Free, Hyaluronic Acid-Modified Self-Assembled Doxorubicin, and Chlorin e6 Nanoparticles Enhance Combined Chemo- and Photodynamic Therapy in vivo.

Int J Nanomedicine. 2024-12-31

[4]
Improved Control of Triple-Negative Breast Cancer Tumor and Metastasis with a pH-Sensitive Hyaluronic Acid Nanocarrier for Doxorubicin Delivery.

ACS Biomater Sci Eng. 2025-1-13

[5]
Engineering of redox-triggered polymeric lipid hybrid nanocarriers for selective drug delivery to cancer cells.

J Mater Chem B. 2025-1-22

[6]
Evaluation of the antineoplastic properties of the photosensitizer biscyanine in 2D and 3D tumor cell models and artificial skin models.

J Photochem Photobiol B. 2025-1

[7]
Preparation of pH-Sensitive Polysaccharide-Small Molecule Nanoparticles and Their Applications for Tumor Chemo- and Immunotherapy.

ACS Appl Mater Interfaces. 2024-12-11

[8]
Formulation and evaluation of cetuximab functionalized phospholipid modified nanocrystals of paclitaxel for non-small cell lung cancer therapy.

Sci Rep. 2024-11-24

[9]
Biodegradable iridium coordinated nanodrugs potentiate photodynamic therapy and immunotherapy of lung cancer.

J Colloid Interface Sci. 2025-2-15

[10]
Transformable self-delivered supramolecular nanomaterials combined with anti-PD-1 antibodies alleviate tumor immunosuppression to treat breast cancer with bone metastasis.

J Nanobiotechnology. 2024-9-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索