Lyu Wei, Liao Jing, Long Yuyang, Li Lintao, Huang Haojie, Dong Jichen, Qu Yan, Yin Jun, Hao Yufeng
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
ACS Appl Mater Interfaces. 2025 Jun 18;17(24):35928-35937. doi: 10.1021/acsami.5c05035. Epub 2025 Jun 4.
Large-scale growth of high-crystalline-quality two-dimensional (2D) semiconductor films is a prerequisite for next generation of electronics and optoelectronics. As a representative case, 2D transition metal dichalcogenides (TMDCs) are usually grown by a chemical vapor deposition (CVD) method based on a van der Waals (vdW) epitaxy mechanism. Commonly used silicon or AlO (sapphire) substrates have either nanoscale roughness or step bunches, and the grown TMDC domains usually show diverse shapes, random orientation alignments with the substrates, and uncontrollable crystalline quality. These problems call for ideal substrates for the vdW epitaxial growth of 2D semiconductors. In this work, we employed graphene monolayers transferred on sapphire wafer as the substrate to investigate the vdW epitaxy of monolayer MoSe using a MOCVD technique. We found that the graphene is essentially the substrate, as it shields the influence of the underlying sapphire. Compared with bare sapphire substrates, the MoSe domains grown on graphene not only show an equilateral triangular shape and mirror symmetry with respect to the graphene lattice in a wide range of parameter windows, but also the domain size, nucleation density, and growth rate can be well controlled by the processing temperatures, pressures, and precursor flows. These results suggest that graphene film is a proper substrate for vdW epitaxy of 2D semiconductors. We further quantitatively investigated the interfacial forces between MoSe domains and graphene using scanning probe microscopy to reveal the weak vdW interaction. Our work highlights the importance of substrates for the vdW epitaxial growth of 2D semiconductors and paves the way for substrate optimization in the 2D film growth and device integrations.
高质量二维(2D)半导体薄膜的大规模生长是下一代电子和光电子器件的前提条件。作为一个典型例子,二维过渡金属二硫属化物(TMDCs)通常通过基于范德华(vdW)外延机制的化学气相沉积(CVD)方法生长。常用的硅或AlO(蓝宝石)衬底具有纳米级粗糙度或台阶束,生长的TMDC畴通常呈现出多样的形状、与衬底的随机取向排列以及不可控的晶体质量。这些问题需要理想的衬底用于二维半导体的范德华外延生长。在这项工作中,我们将转移到蓝宝石晶片上的单层石墨烯用作衬底,使用金属有机化学气相沉积(MOCVD)技术研究单层MoSe的范德华外延。我们发现石墨烯本质上就是衬底,因为它屏蔽了下层蓝宝石的影响。与裸露的蓝宝石衬底相比,在石墨烯上生长的MoSe畴不仅在很宽的参数窗口内呈现出等边三角形形状且相对于石墨烯晶格具有镜像对称性,而且畴尺寸、成核密度和生长速率可以通过加工温度、压力和前驱体流量得到很好的控制。这些结果表明石墨烯薄膜是二维半导体范德华外延的合适衬底。我们进一步使用扫描探针显微镜定量研究了MoSe畴与石墨烯之间的界面力,以揭示弱范德华相互作用。我们的工作突出了衬底对于二维半导体范德华外延生长的重要性,并为二维薄膜生长和器件集成中的衬底优化铺平了道路。