Bartmanski Bartosz J, Bösch Anja, Schmitt Steven, Ireddy Niranjan R, Ren Qun, Findlay Jacqueline, Egli Adrian, Zimmermann-Kogadeeva Maria, Babouee Flury Baharak
Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
HOCH, Cantonal Hospital St. Gallen, Medical Research Center, St. Gallen, Switzerland.
mBio. 2025 Jul 9;16(7):e0389624. doi: 10.1128/mbio.03896-24. Epub 2025 Jun 4.
is a highly versatile and resilient pathogen that can infect different tissues and rapidly develop resistance to multiple drugs. Ceftazidime-avibactam (CZA) is an antibiotic often used to treat multidrug-resistant infections; however, the knowledge on the CZA resistance mechanisms in is limited. Here, we performed laboratory evolution of eight clinical isolates of exposed to either CZA or meropenem (MEM) in sub-inhibitory concentrations and used multi-omics profiling to investigate emerging resistance mechanisms. The majority of strains exposed to MEM developed high resistance (83%, 20/24 strains from eight clinical isolates), with only 17% (4/24) acquiring cross-resistance to CZA. The rate of resistance evolution to CZA was substantially lower (21%, 5/24), while 38% (9/24) acquired cross-resistance to MEM. Whole-genome sequencing revealed strain heterogeneity and different evolutionary paths, with three genes mutated in three or more strains: in CZA-treated strains and and in MEM-treated strains. Transcriptomic and proteomic analysis underlined heterogeneous strain response to antibiotic treatment with few commonly regulated genes and proteins. To identify genes potentially associated with antibiotic resistance, we built a machine learning model that could separate CZA- and MEM-resistant from sensitive strains based on gene expression and protein abundances. To test some of the identified associations, we performed CRISPR-Cas9 genome editing that demonstrated that mutations in and, to a lesser extent, in directly affected CZA resistance. Overall, this study provides novel insights into the strain-specific molecular mechanisms regulating CZA resistance in .IMPORTANCE is one of the most difficult-to-treat pathogens in the hospital, which often acquires resistance to multiple antibiotics. Ceftazidime-avibactam (CZA) is an essential antibiotic used to treat multidrug-resistant infections, but its resistance mechanisms are not well understood. Here we investigated the evolution of resistance to CZA and meropenem (MEM) in eight clinical bacterial isolates from patients' blood, urine, and sputum. While the rate of resistance evolution to MEM was higher than to CZA, MEM-resistant strains rarely acquired cross-resistance toward CZA. To identify changes at the genome, transcriptome, and proteome levels during antibiotic exposure, we performed multi-omics profiling of the evolved strains and confirmed the effect of several genes on antibiotic resistance with genetic engineering. Altogether, our study provides insights into the molecular response of to CZA and MEM and informs therapeutic interventions, suggesting that CZA could still be effective for patients infected with MEM-resistant pathogens.
是一种高度通用且具有适应性的病原体,可感染不同组织并迅速对多种药物产生耐药性。头孢他啶-阿维巴坦(CZA)是一种常用于治疗多重耐药感染的抗生素;然而,关于其对CZA耐药机制的了解有限。在此,我们对8株临床分离株进行了实验室进化实验,使其暴露于亚抑菌浓度的CZA或美罗培南(MEM)中,并使用多组学分析来研究新出现的耐药机制。大多数暴露于MEM的菌株产生了高度耐药性(83%,来自8个临床分离株的24株中有20株),只有17%(4/24)获得了对CZA的交叉耐药性。对CZA的耐药进化率显著较低(21%,5/24),而38%(9/24)获得了对MEM的交叉耐药性。全基因组测序揭示了菌株的异质性和不同的进化路径,有三个基因在三个或更多菌株中发生了突变:在CZA处理的菌株中,以及在MEM处理的菌株中。转录组和蛋白质组分析强调了菌株对抗生素治疗的异质性反应,只有少数共同调控的基因和蛋白质。为了识别可能与抗生素耐药性相关的基因,我们构建了一个机器学习模型,该模型可以根据基因表达和蛋白质丰度将对CZA和MEM耐药的菌株与敏感菌株区分开来。为了测试一些已识别的关联,我们进行了CRISPR-Cas9基因组编辑,结果表明,和(程度较轻)的突变直接影响了对CZA的耐药性。总体而言,本研究为调控对CZA耐药性的菌株特异性分子机制提供了新的见解。重要性是医院中最难治疗的病原体之一,它经常对多种抗生素产生耐药性。头孢他啶-阿维巴坦(CZA)是治疗多重耐药感染的一种重要抗生素,但其耐药机制尚不清楚。在此,我们研究了来自患者血液、尿液和痰液的8株临床细菌分离株对CZA和美罗培南(MEM)的耐药进化情况。虽然对MEM的耐药进化率高于对CZA的耐药进化率,但对MEM耐药的菌株很少获得对CZA的交叉耐药性。为了识别抗生素暴露期间基因组、转录组和蛋白质组水平的变化,我们对进化后的菌株进行了多组学分析,并用基因工程证实了几个基因对抗生素耐药性的影响。总之,我们的研究提供了对其对CZA和MEM分子反应的见解,并为治疗干预提供了依据,表明CZA对感染MEM耐药病原体的患者可能仍然有效。
Front Cell Infect Microbiol. 2025-6-6
Microbiol Spectr. 2025-7
Cochrane Database Syst Rev. 2017-4-25
Nat Commun. 2024-6-28
Brief Bioinform. 2024-3-27
Antimicrob Agents Chemother. 2024-5-2
Front Cell Infect Microbiol. 2023