文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

头孢他啶-阿维巴坦与美罗培南交叉耐药性的多组学分析确定了临床分离株中的共同机制和菌株特异性机制。

Multi-omics profiling of cross-resistance between ceftazidime-avibactam and meropenem identifies common and strain-specific mechanisms in clinical isolates.

作者信息

Bartmanski Bartosz J, Bösch Anja, Schmitt Steven, Ireddy Niranjan R, Ren Qun, Findlay Jacqueline, Egli Adrian, Zimmermann-Kogadeeva Maria, Babouee Flury Baharak

机构信息

Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.

HOCH, Cantonal Hospital St. Gallen, Medical Research Center, St. Gallen, Switzerland.

出版信息

mBio. 2025 Jul 9;16(7):e0389624. doi: 10.1128/mbio.03896-24. Epub 2025 Jun 4.


DOI:10.1128/mbio.03896-24
PMID:40464559
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12239554/
Abstract

is a highly versatile and resilient pathogen that can infect different tissues and rapidly develop resistance to multiple drugs. Ceftazidime-avibactam (CZA) is an antibiotic often used to treat multidrug-resistant infections; however, the knowledge on the CZA resistance mechanisms in is limited. Here, we performed laboratory evolution of eight clinical isolates of exposed to either CZA or meropenem (MEM) in sub-inhibitory concentrations and used multi-omics profiling to investigate emerging resistance mechanisms. The majority of strains exposed to MEM developed high resistance (83%, 20/24 strains from eight clinical isolates), with only 17% (4/24) acquiring cross-resistance to CZA. The rate of resistance evolution to CZA was substantially lower (21%, 5/24), while 38% (9/24) acquired cross-resistance to MEM. Whole-genome sequencing revealed strain heterogeneity and different evolutionary paths, with three genes mutated in three or more strains: in CZA-treated strains and and in MEM-treated strains. Transcriptomic and proteomic analysis underlined heterogeneous strain response to antibiotic treatment with few commonly regulated genes and proteins. To identify genes potentially associated with antibiotic resistance, we built a machine learning model that could separate CZA- and MEM-resistant from sensitive strains based on gene expression and protein abundances. To test some of the identified associations, we performed CRISPR-Cas9 genome editing that demonstrated that mutations in and, to a lesser extent, in directly affected CZA resistance. Overall, this study provides novel insights into the strain-specific molecular mechanisms regulating CZA resistance in .IMPORTANCE is one of the most difficult-to-treat pathogens in the hospital, which often acquires resistance to multiple antibiotics. Ceftazidime-avibactam (CZA) is an essential antibiotic used to treat multidrug-resistant infections, but its resistance mechanisms are not well understood. Here we investigated the evolution of resistance to CZA and meropenem (MEM) in eight clinical bacterial isolates from patients' blood, urine, and sputum. While the rate of resistance evolution to MEM was higher than to CZA, MEM-resistant strains rarely acquired cross-resistance toward CZA. To identify changes at the genome, transcriptome, and proteome levels during antibiotic exposure, we performed multi-omics profiling of the evolved strains and confirmed the effect of several genes on antibiotic resistance with genetic engineering. Altogether, our study provides insights into the molecular response of to CZA and MEM and informs therapeutic interventions, suggesting that CZA could still be effective for patients infected with MEM-resistant pathogens.

摘要

是一种高度通用且具有适应性的病原体,可感染不同组织并迅速对多种药物产生耐药性。头孢他啶-阿维巴坦(CZA)是一种常用于治疗多重耐药感染的抗生素;然而,关于其对CZA耐药机制的了解有限。在此,我们对8株临床分离株进行了实验室进化实验,使其暴露于亚抑菌浓度的CZA或美罗培南(MEM)中,并使用多组学分析来研究新出现的耐药机制。大多数暴露于MEM的菌株产生了高度耐药性(83%,来自8个临床分离株的24株中有20株),只有17%(4/24)获得了对CZA的交叉耐药性。对CZA的耐药进化率显著较低(21%,5/24),而38%(9/24)获得了对MEM的交叉耐药性。全基因组测序揭示了菌株的异质性和不同的进化路径,有三个基因在三个或更多菌株中发生了突变:在CZA处理的菌株中,以及在MEM处理的菌株中。转录组和蛋白质组分析强调了菌株对抗生素治疗的异质性反应,只有少数共同调控的基因和蛋白质。为了识别可能与抗生素耐药性相关的基因,我们构建了一个机器学习模型,该模型可以根据基因表达和蛋白质丰度将对CZA和MEM耐药的菌株与敏感菌株区分开来。为了测试一些已识别的关联,我们进行了CRISPR-Cas9基因组编辑,结果表明,和(程度较轻)的突变直接影响了对CZA的耐药性。总体而言,本研究为调控对CZA耐药性的菌株特异性分子机制提供了新的见解。重要性是医院中最难治疗的病原体之一,它经常对多种抗生素产生耐药性。头孢他啶-阿维巴坦(CZA)是治疗多重耐药感染的一种重要抗生素,但其耐药机制尚不清楚。在此,我们研究了来自患者血液、尿液和痰液的8株临床细菌分离株对CZA和美罗培南(MEM)的耐药进化情况。虽然对MEM的耐药进化率高于对CZA的耐药进化率,但对MEM耐药的菌株很少获得对CZA的交叉耐药性。为了识别抗生素暴露期间基因组、转录组和蛋白质组水平的变化,我们对进化后的菌株进行了多组学分析,并用基因工程证实了几个基因对抗生素耐药性的影响。总之,我们的研究提供了对其对CZA和MEM分子反应的见解,并为治疗干预提供了依据,表明CZA对感染MEM耐药病原体的患者可能仍然有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8caa/12239554/77d1bab7d21f/mbio.03896-24.f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8caa/12239554/13eba31f677b/mbio.03896-24.f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8caa/12239554/39b47f1f3776/mbio.03896-24.f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8caa/12239554/21c575685020/mbio.03896-24.f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8caa/12239554/7dc909a686e3/mbio.03896-24.f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8caa/12239554/77d1bab7d21f/mbio.03896-24.f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8caa/12239554/13eba31f677b/mbio.03896-24.f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8caa/12239554/39b47f1f3776/mbio.03896-24.f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8caa/12239554/21c575685020/mbio.03896-24.f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8caa/12239554/7dc909a686e3/mbio.03896-24.f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8caa/12239554/77d1bab7d21f/mbio.03896-24.f005.jpg

相似文献

[1]
Multi-omics profiling of cross-resistance between ceftazidime-avibactam and meropenem identifies common and strain-specific mechanisms in clinical isolates.

mBio. 2025-7-9

[2]
Impact of meropenem exposure on fluoroquinolone and carbapenem resistance in Pseudomonas aeruginosa infection in inpatients in a Japanese university hospital: Insights into oprD mutations and efflux pump overexpression.

J Glob Antimicrob Resist. 2025-3

[3]
Resistance to ceftazidime-avibactam and other new β-lactams in clinical isolates: a multi-center surveillance study.

Microbiol Spectr. 2024-8-6

[4]
Evaluation of the Synergy of Ceftazidime-Avibactam in Combination with Meropenem, Amikacin, Aztreonam, Colistin, or Fosfomycin against Well-Characterized Multidrug-Resistant Klebsiella pneumoniae and Pseudomonas aeruginosa.

Antimicrob Agents Chemother. 2019-7-25

[5]
Evolution of ceftazidime-avibactam resistance driven by variation in to during treatment of ST11-K64 hypervirulent .

Front Cell Infect Microbiol. 2025-6-6

[6]
Ceftazidime/avibactam resistance is associated with PER-3-producing ST309 lineage in Chilean clinical isolates of non-carbapenemase producing .

Front Cell Infect Microbiol. 2024

[7]
Time-Kill Evaluation of Antibiotic Combinations Containing Ceftazidime-Avibactam against Extensively Drug-Resistant Pseudomonas aeruginosa and Their Potential Role against Ceftazidime-Avibactam-Resistant Isolates.

Microbiol Spectr. 2021-9-3

[8]
Clinical outcomes of phenotype-guided treatment in group D carbapenemase-producing bacteremia.

Microbiol Spectr. 2025-7

[9]
Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis.

Cochrane Database Syst Rev. 2017-4-25

[10]
activity of imipenem/relebactam and comparators against isolates collected in Brazilian hospitals according to results from the Study for Monitoring Antimicrobial Resistance Trends, 2020-2021.

Microbiol Spectr. 2025-7

本文引用的文献

[1]
Merging multi-omics with proteome integral solubility alteration unveils antibiotic mode of action.

Elife. 2024-9-27

[2]
Non-antibiotic pharmaceutical phenylbutazone binding to MexR reduces the antibiotic susceptibility of Pseudomonas aeruginosa.

Microbiol Res. 2024-11

[3]
Regulation of curcumin reductase curA (PA2197) through sodium hypochlorite and N-ethylmaleimide sensing by TetR family repressor CurR (PA2196) in Pseudomonas aeruginosa.

Gene. 2024-11-15

[4]
Detection of hidden antibiotic resistance through real-time genomics.

Nat Commun. 2024-6-28

[5]
Assessing computational predictions of antimicrobial resistance phenotypes from microbial genomes.

Brief Bioinform. 2024-3-27

[6]
development of resistance against antipseudomonal agents: comparison of novel β-lactam/β-lactamase inhibitor combinations and other β-lactam agents.

Antimicrob Agents Chemother. 2024-5-2

[7]
Genomic and metabolic versatility of contributes to its inter-kingdom transmission and survival.

J Med Microbiol. 2024-2

[8]
Activity of aztreonam/avibactam and ceftazidime/avibactam against Enterobacterales with carbapenemase-independent carbapenem resistance.

Int J Antimicrob Agents. 2024-3

[9]
The bacterial genetic determinants of Escherichia coli capacity to cause bloodstream infections in humans.

PLoS Genet. 2023-8

[10]
Multifactorial resistance mechanisms associated with resistance to ceftazidime-avibactam in clinical isolates from Switzerland.

Front Cell Infect Microbiol. 2023

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索