Geistert Kristina, Ternes Simon, Ritzer David B, Paetzold Ulrich W
Light Technology Institute, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany.
Institute of Microstructure Technology, KIT, 76344 Eggenstein-Leopoldshafen, Germany.
ACS Appl Mater Interfaces. 2023 Oct 31. doi: 10.1021/acsami.3c11923.
Transferring record power conversion efficiency (PCE) >25% of spin coated perovskite solar cells (PSCs) from the laboratory scale to large-area photovoltaic modules requires significant advances in scalable fabrication techniques. In this work, we demonstrate the fundamental interrelation between drying dynamics of slot-die coated precursor solution thin films and the quality of resulting slot-die coated gas-quenched polycrystalline perovskite thin films. Well-defined drying conditions are established using a temperature-stabilized, movable table and a flow-controlled, oblique impinging slot nozzle purged with nitrogen. The accurately deposited solution thin film on the substrate is recorded by a tilted CCD camera, allowing for in situ monitoring of the perovskite thin film formation. With the tracking of crystallization dynamics during the drying process, we identify the critical process parameters needed for the design of optimal drying and gas quenching systems. In addition, defining different drying regimes, we derive practical slot jet adjustments preventing gas backflow and demonstrate large-area, homogeneous, and pinhole-free slot-die coated perovskite thin films that result in solar cells with PCEs of up to 18.6%. Our study reveals key interrelations of process parameters, e.g., the gas flow and drying velocity, and the exact crystallization position with the morphology formation of fabricated thin films, resulting in a homogeneous performance of corresponding 50 × 50 mm solar minimodules (17.2%) with only minimal upscaling loss. In addition, we validate a previously developed model on the drying dynamics of perovskite thin films on small-area slot-die coated areas of ≥100 cm. The study provides methodical guidelines for the design of future slot-die coating setups and establishes a step forward to a successful transfer of solution processes towards industrial-scale deposition systems beyond brute force optimization.
将实验室规模下旋涂钙钛矿太阳能电池(PSC)大于25%的记录功率转换效率(PCE)转移到大面积光伏组件,需要在可扩展制造技术方面取得重大进展。在这项工作中,我们展示了狭缝模头涂布前驱体溶液薄膜的干燥动力学与所得狭缝模头涂布气淬多晶钙钛矿薄膜质量之间的基本相互关系。使用温度稳定的可移动工作台以及用氮气吹扫的流量控制倾斜冲击狭缝喷嘴,建立了明确的干燥条件。通过倾斜的电荷耦合器件(CCD)相机记录在基板上精确沉积的溶液薄膜,从而能够原位监测钙钛矿薄膜的形成。通过跟踪干燥过程中的结晶动力学,我们确定了设计最佳干燥和气淬系统所需的关键工艺参数。此外,通过定义不同的干燥方式,我们得出了防止气体回流的实用狭缝喷射调整方法,并展示了大面积、均匀且无针孔的狭缝模头涂布钙钛矿薄膜,这些薄膜制成的太阳能电池PCE高达18.6%。我们的研究揭示了工艺参数之间的关键相互关系,例如气流和干燥速度,以及精确的结晶位置与所制备薄膜的形态形成之间的关系,从而使相应的50×50毫米太阳能微型模块具有均匀的性能(17.2%),且放大损失极小。此外,我们验证了先前开发的关于≥100平方厘米小面积狭缝模头涂布区域上钙钛矿薄膜干燥动力学的模型。该研究为未来狭缝模头涂布装置的设计提供了方法指导,并朝着成功地将溶液工艺转移到工业规模沉积系统迈出了一步,而不仅仅是进行蛮力优化。