Kim Ji-Hyun, Kim Joodeok, Kim Byung Hyo, Song Sanggeun, Kang Jingyu, Rhee Jinho, Kim Donghee, Chun Hoje, Choi Hyesung, Cho Hyungjin, Kim Yongjoon, Jung Jae Won, Son Youngju, Jung Junhyeok, Park Kunwoo, Jeon Sungho, Lee Minho, Han Byungchan, Lee Won Chul, Kim Dongjun, Hyeon Taeghwan, Sung Jaeyoung, Park Jungwon
Department of Chemistry, Global Science Research Center for Systems Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea.
Department of Chemistry, Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul 06974, Republic of Korea.
Proc Natl Acad Sci U S A. 2025 Jun 10;122(23):e2424950122. doi: 10.1073/pnas.2424950122. Epub 2025 Jun 4.
Colloidal nanoparticles are of great interest in modern science and industry. However, the thermodynamic mechanism and dynamics of nanoparticle growth have yet to be understood. Addressing these issues, we tracked hundreds of in-situ growth trajectories of a nanoparticle ensemble using liquid-phase TEM and found that the nanoparticle growth, including coalescence, exhibits nanoparticle size-dependent multiphasic dynamics, unexplainable by current theories. Motivated by this finding, we developed a model and theory for an ensemble of growing nanoparticles, providing a unified, quantitative understanding of the time-dependent mean and fluctuation of nanoparticle size and size-dependent growth rate profiles across various nanoparticle systems and experimental conditions. Our work reveals that the chemical potential in a small nanoparticle strongly deviates from the Gibbs-Thomson equation, shedding light on how it governs the size-dependent growth dynamics of nanoparticles.
胶体纳米粒子在现代科学和工业中备受关注。然而,纳米粒子生长的热力学机制和动力学仍有待了解。为了解决这些问题,我们使用液相透射电子显微镜跟踪了数百个纳米粒子集合的原位生长轨迹,发现纳米粒子的生长,包括聚结,呈现出纳米粒子尺寸依赖性的多相动力学,这是目前理论无法解释的。受这一发现的启发,我们为生长中的纳米粒子集合开发了一个模型和理论,对各种纳米粒子系统和实验条件下纳米粒子尺寸的时间依赖性均值和波动以及尺寸依赖性生长速率分布提供了统一的定量理解。我们的工作表明,小纳米粒子中的化学势与吉布斯-汤姆逊方程有很大偏差,这揭示了它如何控制纳米粒子的尺寸依赖性生长动力学。