Han Jie, Wang Shuideng, Zheng Zhiqiang, Chen Donglei, Zhang Wenqi, Qu Zhi, Cheng Mingxing, Yao Yiqing, Sitti Metin, Dong Lixin
Ministry of Education Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany.
Proc Natl Acad Sci U S A. 2025 Jun 10;122(23):e2426846122. doi: 10.1073/pnas.2426846122. Epub 2025 Jun 4.
Soft magnetic miniature devices are crucial for applications in minimally invasive medicine, soft electronics, and robotics. While substantial progress has been made, current magnetic programming techniques are inherently tied to template-based and sequential fabrication processes. These processes limit scalability, precision, and programmability. Here, we present a template-free, integrative strategy that leverages interlayer stress-induced 3D shape morphing in xerogel-PDMS bilayer materials triggered by temperature variations. This process induces preprogrammed deformation and fixes the 3D structure via interlayer stress and solid-liquid phase transition. It is akin to an insect encased in amber, resulting in a soft machine with precisely tailored magnetic domains upon saturated magnetization. The approach eliminates the need for predesigned molds, which offers scalable, template-free programmable magnetization, reducing time and labor costs. The versatility of this method is demonstrated through reconfigurable mechanical behavior in kirigami metamaterial structures, information encryption, and multilegged millirobots. Moreover, by incorporating a nonmagnetic PDMS layer, laser-based engraving and ablation allow simultaneous control of interlayer stress and material properties. This facilitates precise regulation of stress-induced deformation and magnetically responsive regions with 20 μm resolution and over 1.8 T magnetization strength. This template-free 3D magnetization strategy significantly enhances design flexibility, machining precision, and mass production. It paves the way for advanced multiscale and programmable soft magnetic devices.
软磁微型器件对于微创医学、柔性电子学和机器人技术的应用至关重要。尽管已经取得了重大进展,但目前的磁编程技术本质上与基于模板的顺序制造工艺相关联。这些工艺限制了可扩展性、精度和可编程性。在此,我们提出了一种无模板的集成策略,该策略利用温度变化触发的干凝胶-聚二甲基硅氧烷(xerogel-PDMS)双层材料中的层间应力诱导3D形状变形。这个过程会引发预编程的变形,并通过层间应力和固液相变固定3D结构。这类似于一只被包裹在琥珀中的昆虫,在饱和磁化时产生一个具有精确定制磁畴的柔性机器。该方法无需预先设计的模具,提供了可扩展的、无模板的可编程磁化,减少了时间和劳动力成本。通过折纸超材料结构中的可重构力学行为、信息加密和多足微型机器人展示了这种方法的多功能性。此外,通过并入非磁性聚二甲基硅氧烷层,基于激光的雕刻和烧蚀允许同时控制层间应力和材料特性。这有助于以20μm的分辨率和超过1.8T的磁化强度精确调节应力诱导的变形和磁响应区域。这种无模板的3D磁化策略显著提高了设计灵活性、加工精度和大规模生产能力。它为先进的多尺度和可编程软磁器件铺平了道路。