Suppr超能文献

基于集成可解释人工智能的卷积神经网络-视觉Transformer对桑叶病害的检测

Mulberry leaf disease detection by CNN-ViT with XAI integration.

作者信息

Hasan Mohammad Asif, Haque Fariha, Sarker Hasan, Abdullah Rafae, Roy Tonmoy, Taaha Nishat, Arafat Yeasin, Patwary Abdul Karim, Ahsan Mominul, Haider Julfikar

机构信息

Department of Electronics & Telecommunication Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh.

Department of Business Analytics and Data Science, Oklahoma State University, Stillwater, Oklahoma, United States of America.

出版信息

PLoS One. 2025 Jun 4;20(6):e0325188. doi: 10.1371/journal.pone.0325188. eCollection 2025.

Abstract

Mulberry leaf disease detection is vital for maintaining the health and productivity of mulberry crops. In this paper, a novel approach was proposed by integrating explainable artificial intelligence (XAI) techniques with a convolutional neural network (CNN) and vision transformer (ViT) for effective mulberry leaf disease classification with three disease classes. Initially, in this proposed CNN-ViT model, features are extracted using a customized CNN architecture, and then the extracted features are fed into ViT for leaf disease classification in a more streamlined approach. The CNN-ViT model achieved promising results with a projection dimension of 64, utilizing 8 heads and 8 transformer layers, yielding an accuracy of 95.60% with notable precision of 94.75%, recalls of 92.40%, and F1-scores of 93.45%. The proposed method also took 0.0017 seconds to predict an individual image. The accuracy of the proposed method was comparable to that of other state-of-the-art (SOTA) methods reported in the literature. Finally, Grad-CAM was utilized for detecting precise region of interest for diseased leaves, leaf spots, and leaf rust, providing interpretability and insights into the model's decision-making process. This comprehensive approach demonstrates the effectiveness of explainable artificial intelligence (XAI) integration in the CNN-ViT model for mulberry leaf disease detection, paving the way for improved agricultural disease management strategies.

摘要

桑叶病害检测对于维持桑树作物的健康和产量至关重要。本文提出了一种新颖的方法,将可解释人工智能(XAI)技术与卷积神经网络(CNN)和视觉Transformer(ViT)相结合,用于对三种病害类别进行有效的桑叶病害分类。最初,在这个提出的CNN-ViT模型中,使用定制的CNN架构提取特征,然后将提取的特征以更简化的方式输入到ViT中进行叶片病害分类。CNN-ViT模型在投影维度为64、使用8个头和8个Transformer层的情况下取得了有前景的结果,准确率为95.60%,显著精度为94.75%,召回率为92.40%,F1分数为93.45%。该方法预测单个图像还需要0.0017秒。所提方法的准确率与文献中报道的其他先进(SOTA)方法相当。最后,利用Grad-CAM来检测病叶、叶斑和叶锈的精确感兴趣区域,为模型的决策过程提供可解释性和见解。这种综合方法证明了在CNN-ViT模型中集成可解释人工智能(XAI)用于桑叶病害检测的有效性,为改进农业病害管理策略铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7abe/12136458/6dbf9b76d4f9/pone.0325188.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验