Suppr超能文献

医学图像分割中不确定性估计方法的评估:探索不确定性在临床应用中的使用情况。

Evaluation of uncertainty estimation methods in medical image segmentation: Exploring the usage of uncertainty in clinical deployment.

作者信息

Li Shiman, Yuan Mingzhi, Dai Xiaokun, Zhang Chenxi

机构信息

Digital Medical Research Center, School of Basic Medical Science, Fudan University, Shanghai, 200032, China; Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention, Shanghai, 200032, China.

Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention, Shanghai, 200032, China; Digital Medical Research Center, Academy for Engineering and Technology, Fudan University, Shanghai, 200032, China.

出版信息

Comput Med Imaging Graph. 2025 Sep;124:102574. doi: 10.1016/j.compmedimag.2025.102574. Epub 2025 May 30.

Abstract

Uncertainty estimation methods are essential for the application of artificial intelligence (AI) models in medical image segmentation, particularly in addressing reliability and feasibility challenges in clinical deployment. Despite their significance, the adoption of uncertainty estimation methods in clinical practice remains limited due to the lack of a comprehensive evaluation framework tailored to their clinical usage. To address this gap, a simulation of uncertainty-assisted clinical workflows is conducted, highlighting the roles of uncertainty in model selection, sample screening, and risk visualization. Furthermore, uncertainty evaluation is extended to pixel, sample, and model levels to enable a more thorough assessment. At the pixel level, the Uncertainty Confusion Metric (UCM) is proposed, utilizing density curves to improve robustness against variability in uncertainty distributions and to assess the ability of pixel uncertainty to identify potential errors. At the sample level, the Expected Segmentation Calibration Error (ESCE) is introduced to provide more accurate calibration aligned with Dice, enabling more effective identification of low-quality samples. At the model level, the Harmonic Dice (HDice) metric is developed to integrate uncertainty and accuracy, mitigating the influence of dataset biases and offering a more robust evaluation of model performance on unseen data. Using this systematic evaluation framework, five mainstream uncertainty estimation methods are compared on organ and tumor datasets, providing new insights into their clinical applicability. Extensive experimental analyses validated the practicality and effectiveness of the proposed metrics. This study offers clear guidance for selecting appropriate uncertainty estimation methods in clinical settings, facilitating their integration into clinical workflows and ultimately improving diagnostic efficiency and patient outcomes.

摘要

不确定性估计方法对于人工智能(AI)模型在医学图像分割中的应用至关重要,尤其是在应对临床部署中的可靠性和可行性挑战方面。尽管其具有重要意义,但由于缺乏针对临床应用的全面评估框架,不确定性估计方法在临床实践中的采用仍然有限。为了弥补这一差距,本文进行了不确定性辅助临床工作流程的模拟,突出了不确定性在模型选择、样本筛选和风险可视化中的作用。此外,不确定性评估扩展到像素、样本和模型层面,以实现更全面的评估。在像素层面,提出了不确定性混淆度量(UCM),利用密度曲线提高对不确定性分布变化的鲁棒性,并评估像素不确定性识别潜在错误的能力。在样本层面,引入了预期分割校准误差(ESCE),以提供与骰子系数更准确的校准,从而更有效地识别低质量样本。在模型层面,开发了调和骰子(HDice)度量,以整合不确定性和准确性,减轻数据集偏差的影响,并对未见数据上的模型性能提供更稳健的评估。使用这个系统评估框架,在器官和肿瘤数据集上比较了五种主流不确定性估计方法,为它们的临床适用性提供了新的见解。广泛的实验分析验证了所提出度量的实用性和有效性。本研究为在临床环境中选择合适的不确定性估计方法提供了明确指导,促进它们融入临床工作流程,最终提高诊断效率和患者预后。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验