Gamal Alaa Al-Rahman, Yehia Sarah, Sayed Hayam A E, Hussein Mohamed Ahmed Mohamady, El-Sayed El-Sayed Mahmoud, El-Sherbiny Ibrahim M
Biophysics Group, Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt; Nanomedicine Research Laboratories, Center for Materials Science (CMS), Zewail City of Science and Technology, 6th of October, Giza 12578, Egypt.
Nanomedicine Research Laboratories, Center for Materials Science (CMS), Zewail City of Science and Technology, 6th of October, Giza 12578, Egypt.
Int J Biol Macromol. 2025 Jul;318(Pt 1):144832. doi: 10.1016/j.ijbiomac.2025.144832. Epub 2025 Jun 2.
Millions of diabetic patients endure serious complications, particularly chronic wounds. Prolonged inflammation, oxidative stress, bacterial infection, and impaired vascularization are characteristics of the diabetic wound that impede tissue regeneration and result in inappropriate healing. Therefore, fabricating antioxidant, antibacterial, and anti-inflammatory wound dressing is highly desirable. Due to this demand, a new multifunctional bilayer dressing was fabricated utilizing electrospinning and 3D-printing techniques. The nanofibrous top layer comprises polycaprolactone and cellulose acetate (PCL/CA) and is loaded with synthesized antibacterial chitosan/selenium nanoparticles (CS/SeNPs). The 3D-printed hydrogel bottom layer is composed of sodium alginate, gelatin, and polyvinyl alcohol (SGPH) incorporating mixed pluronics nanomicelles individually loaded with antioxidant rutin and anti-inflammatory simvastatin drugs (RLN and SLN). Morphology, physicochemical, and biological characteristics were evaluated. According to the results, the developed bilayer wound dressing (PCL/CA2/LSGPH) displayed significant antibacterial capability against E. coli and S. aureus with a rate of inhibition of 99 %, and cell viability up to 97 % after 24 h, and cell migration of 95 % within 48 h. PCL/CA2/LSGPH significantly increased the wound healing rate by 95 % after 14 days in the in-vivo diabetic wound healing experiment. The histology examination demonstrated that the entire epidermal layer was generated following treatment with PCL/CA2/LSGPH, enhancing neovascularization, collagen deposition, and re-epithelialization by decreasing proinflammatory cytokines TNF-α and IL-6 level and upregulating antioxidant SOD level. These results suggest that the newly developed bilayer wound dressing PCL/CA2/LSGPH emerged as a promising dressing for treating diabetic wounds and other tissue regeneration applications.
数百万糖尿病患者承受着严重的并发症,尤其是慢性伤口。长期炎症、氧化应激、细菌感染和血管生成受损是糖尿病伤口的特征,这些特征会阻碍组织再生并导致愈合不当。因此,制备具有抗氧化、抗菌和抗炎作用的伤口敷料非常必要。基于这种需求,利用静电纺丝和3D打印技术制备了一种新型多功能双层敷料。纳米纤维顶层由聚己内酯和醋酸纤维素(PCL/CA)组成,并负载了合成的抗菌壳聚糖/硒纳米颗粒(CS/SeNPs)。3D打印水凝胶底层由海藻酸钠、明胶和聚乙烯醇(SGPH)组成,其中包含分别负载抗氧化剂芦丁和抗炎药物辛伐他汀的混合普朗尼克纳米胶束(RLN和SLN)。对其形态、物理化学和生物学特性进行了评估。结果表明,所开发的双层伤口敷料(PCL/CA2/LSGPH)对大肠杆菌和金黄色葡萄球菌具有显著的抗菌能力,抑制率为99%,24小时后细胞活力高达97%,48小时内细胞迁移率为95%。在体内糖尿病伤口愈合实验中,PCL/CA2/LSGPH在14天后显著提高了伤口愈合率95%。组织学检查表明,用PCL/CA2/LSGPH处理后形成了完整的表皮层,通过降低促炎细胞因子TNF-α和IL-6水平以及上调抗氧化剂SOD水平,促进了新血管形成、胶原蛋白沉积和再上皮化。这些结果表明,新开发的双层伤口敷料PCL/CA2/LSGPH有望用于治疗糖尿病伤口和其他组织再生应用。