Suppr超能文献

PTM融合网络:一种用于预测疾病相关翻译后修饰和疾病亚型分类的深度学习方法。

PTMFusionNet: A Deep Learning Approach for Predicting Disease Related Post-translational Modification and Classifying Disease Subtypes.

作者信息

Ni Jie, Zhou Yifan, Li Bin, Zhang Xinting, Deng Yuanyuan, Sun Jie, Yan Donghui, Jing Shengqi, Lu Shan, Xie Zhuoying, Zhang Xin, Liu Yun

机构信息

Institute for Molecular Medical Technology, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China; Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China; Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, Jiangsu, China.

Institute for Molecular Medical Technology, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China; Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, Jiangsu, China.

出版信息

Mol Cell Proteomics. 2025 Jul;24(7):101009. doi: 10.1016/j.mcpro.2025.101009. Epub 2025 Jun 2.

Abstract

With the advancement of technologies such as mass spectrometry, it has become possible to simultaneously perform large-scale detection of protein intensity and corresponding post-translational modification (PTM) information, thereby facilitating clinical diagnosis and treatment. However, existing PTM information is insufficient to fully integrate with protein expression data. We propose a deep learning method called PTMFusionNet, which predicts potential disease-related PTMs and integrates them with protein expression data to classify disease subtypes. PTMFusionNet includes two Graph Convolutional Network (GCN) models: the Layer-Attention Graph Convolutional Network (LAGCN) and the Feature Weighting Graph Convolutional Network (FWGCN). LAGCN is used to predict PTM potentiality scores, while FWGCN integrates these scores with protein expression data for disease subtype classification. Experimental results across three datasets (KIPAN, COADREAD, and THCA) demonstrate that PTMFusionNet outperforms benchmark algorithms in accuracy, F1 score, and AUC, highlighting its robustness in identifying critical PTM biomarkers and advancing disease subtyping.

摘要

随着质谱等技术的进步,同时进行蛋白质强度的大规模检测和相应的翻译后修饰(PTM)信息分析已成为可能,从而推动了临床诊断和治疗。然而,现有的PTM信息不足以与蛋白质表达数据充分整合。我们提出了一种名为PTMFusionNet的深度学习方法,该方法可预测潜在的疾病相关PTM,并将其与蛋白质表达数据整合以对疾病亚型进行分类。PTMFusionNet包括两个图卷积网络(GCN)模型:层注意力图卷积网络(LAGCN)和特征加权图卷积网络(FWGCN)。LAGCN用于预测PTM潜力得分,而FWGCN将这些得分与蛋白质表达数据整合以进行疾病亚型分类。在三个数据集(KIPAN、COADREAD和THCA)上的实验结果表明,PTMFusionNet在准确率、F1分数和AUC方面优于基准算法,突出了其在识别关键PTM生物标志物和推进疾病亚型分类方面的稳健性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6c3/12365514/cf2c61b301fd/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验