Suppr超能文献

基于深度学习的冠状动脉运动估计和补偿在短扫描心脏 CT 中的应用。

Deep learning-based coronary artery motion estimation and compensation for short-scan cardiac CT.

机构信息

German Cancer Research Center (DKFZ), Heidelberg, Germany.

Ruprecht-Karls-University, Heidelberg, Germany.

出版信息

Med Phys. 2021 Jul;48(7):3559-3571. doi: 10.1002/mp.14927. Epub 2021 May 26.

Abstract

PURPOSE

During a typical cardiac short scan, the heart can move several millimeters. As a result, the corresponding CT reconstructions may be corrupted by motion artifacts. Especially the assessment of small structures, such as the coronary arteries, is potentially impaired by the presence of these artifacts. In order to estimate and compensate for coronary artery motion, this manuscript proposes the deep partial angle-based motion compensation (Deep PAMoCo).

METHODS

The basic principle of the Deep PAMoCo relies on the concept of partial angle reconstructions (PARs), that is, it divides the short scan data into several consecutive angular segments and reconstructs them separately. Subsequently, the PARs are deformed according to a motion vector field (MVF) such that they represent the same motion state and summed up to obtain the final motion-compensated reconstruction. However, in contrast to prior work that is based on the same principle, the Deep PAMoCo estimates and applies the MVF via a deep neural network to increase the computational performance as well as the quality of the motion compensated reconstructions.

RESULTS

Using simulated data, it could be demonstrated that the Deep PAMoCo is able to remove almost all motion artifacts independent of the contrast, the radius and the motion amplitude of the coronary artery. In any case, the average error of the CT values along the coronary artery is about 25 HU while errors of up to 300 HU can be observed if no correction is applied. Similar results were obtained for clinical cardiac CT scans where the Deep PAMoCo clearly outperforms state-of-the-art coronary artery motion compensation approaches in terms of processing time as well as accuracy.

CONCLUSIONS

The Deep PAMoCo provides an efficient approach to increase the diagnostic value of cardiac CT scans even if they are highly corrupted by motion.

摘要

目的

在典型的心脏短扫描中,心脏可能会移动几毫米。因此,相应的 CT 重建可能会受到运动伪影的干扰。特别是评估小结构,如冠状动脉,可能会因这些伪影的存在而受到影响。为了估计和补偿冠状动脉运动,本文提出了基于深度偏角的运动补偿(Deep PAMoCo)。

方法

Deep PAMoCo 的基本原理基于偏角重建(PAR)的概念,即将短扫描数据分为几个连续的角度段并分别重建。然后,根据运动矢量场(MVF)对 PAR 进行变形,使其代表相同的运动状态,并将它们相加以获得最终的运动补偿重建。然而,与基于相同原理的先前工作不同,Deep PAMoCo 通过深度神经网络来估计和应用 MVF,以提高计算性能和运动补偿重建的质量。

结果

使用模拟数据,证明了 Deep PAMoCo 能够去除几乎所有的运动伪影,而与对比度、冠状动脉的半径和运动幅度无关。在任何情况下,沿着冠状动脉的 CT 值的平均误差约为 25 HU,而如果不进行校正,则可以观察到高达 300 HU 的误差。在临床心脏 CT 扫描中也得到了类似的结果,Deep PAMoCo 在处理时间和准确性方面明显优于最先进的冠状动脉运动补偿方法。

结论

Deep PAMoCo 提供了一种有效的方法,可以提高心脏 CT 扫描的诊断价值,即使它们受到运动的严重干扰。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验