Portet-Koltalo Florence, Bassimon Chloé, Merlet-Machour Nadine, Crampon Marc, Baraud Fabienne, Leleyter Lydia, Garon David, Legohlisse Steeven
Université de Rouen Normandie, INSA Rouen Normandie, CNRS, COBRA UMR 6014, INC3M FR 3038, 55 Rue Saint Germain, 27000, Evreux, France.
Bureau de Recherches Géologiques et Minières (BRGM), 45060, Orléans, France.
Environ Sci Pollut Res Int. 2025 May;32(25):15136-15149. doi: 10.1007/s11356-025-36557-3. Epub 2025 Jun 4.
Polycyclic aromatic hydrocarbons (PAHs) are particularly found in soils with current or former industrial activities. Although their total concentration is commonly given for risk assessments, some PAHs irreversibly bound to soil particles are not accessible for living organisms; so it is important to assess the bioaccessible fraction most likely to lead to organisms exposure. A new methodology was developed, using a polymer of carboxymethyl-β-cyclodextrin (pCMCD) to extract readily desorbed PAH fraction, followed by microextraction before GC-MS analysis. It allowed simplifying and minimizing the overall procedure, which better fitted with the green analytical chemistry principles compared to the standard procedure using hydroxypropyl-β-cyclodextrin. The new procedure was applied to several industrial and urban soils that have been contaminated for several decades. Their bioaccessible fraction appeared particularly low (2.4-9.6%). Soil's parameters were responsible of the PAH low mass-transfer ability, such as particle size or organic matter content. But more surprisingly, cationic exchange capacity (CEC) and total content of nitrogen (N content) had also influence on the remaining bioaccessible fraction, particularly in N-poor and sandy (of low CEC) soils. An industrial soil, combining low N content and high concentrations of metal co-contaminants, was tested for PAH biodegradation. Although stimulation of soil microorganisms could appear promising, only a portion of the bioaccessible fraction could be dissipated. So in co-contaminated aged and mineralized soils, even the PAH remaining bioaccesssible fraction could not be entirely dissipated which makes it difficult to envisage natural or biostimulated remediation of such industrial soils.
多环芳烃(PAHs)特别常见于当前或曾经有工业活动的土壤中。尽管在风险评估中通常会给出它们的总浓度,但一些不可逆地与土壤颗粒结合的多环芳烃生物体无法接触到;因此,评估最有可能导致生物体接触的生物可利用部分非常重要。开发了一种新方法,使用羧甲基-β-环糊精聚合物(pCMCD)提取易于解吸的多环芳烃部分,然后在气相色谱-质谱分析之前进行微萃取。与使用羟丙基-β-环糊精的标准方法相比,该方法简化并最小化了整个过程,更符合绿色分析化学原则。新方法应用于几种已被污染数十年的工业和城市土壤。它们的生物可利用部分特别低(2.4 - 9.6%)。土壤参数导致了多环芳烃的低传质能力,如粒径或有机质含量。但更令人惊讶的是,阳离子交换容量(CEC)和总氮含量(N含量)也对剩余的生物可利用部分有影响,特别是在低氮和沙质(低CEC)土壤中。对一种结合了低氮含量和高浓度金属共污染物的工业土壤进行了多环芳烃生物降解测试。尽管刺激土壤微生物似乎很有前景,但只有一部分生物可利用部分能够被降解。因此,在共污染的老化和矿化土壤中,即使是多环芳烃剩余的生物可利用部分也无法完全降解,这使得难以设想对这类工业土壤进行自然或生物刺激修复。