Suppr超能文献

放射治疗类解决方案,用于校正能量依赖型光激励发光薄膜剂量计。

Radiotherapy class-solution to correct an energy-dependent optically stimulated luminescence film dosimeter.

作者信息

Caprioli Marco, Colijn Arnaud, Delombaerde Laurence, De Roover Robin, Bianca Vanstraelen, Crijns Wouter

机构信息

Department of Oncology, KU Leuven, Leuven, Belgium.

Iridium Netwerk, Wilrijk, Belgium.

出版信息

Med Phys. 2025 Jul;52(7):e17920. doi: 10.1002/mp.17920. Epub 2025 Jun 4.

Abstract

BACKGROUND

Patient-Specific Quality Assurance in Radiotherapy (PSQA) demands high-resolution dosimetry to verify accurate dose delivery in personalized intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) treatments. A novel optically stimulated luminescence (OSL) film dosimeter made with BaFBr:Eu phosphor, offers submm spatial resolution. However, its energy-dependent response, requires corrections. Previously, a correction was proposed for a class of prostate cancer treatments assuming similar OSL energy response within the class.

PURPOSE

This study explored other class-specific corrections using a comprehensive radiotherapy treatment dataset. New classes were formed based on the similarity of treatment parameters without the need for user-based classifications.

METHODS

The dataset comprised 101 IMRT and VMAT treatment plans for three different Varian linac types (2 × Halcyon, 2 × TrueBeam, and 1 × TrueBeam STx). The treatment classes are based on a K-means clustering algorithm, that utilizes twelve quantitative treatment parameters expressed in principal components. Within cluster sum square (WCSS) was used to find the optimal number of classes and prevent data-overfitting. This objective assignment to classes was compared with three independent manual classifications by experienced medical physicists and dosimetrist. Additionally, a random class assignment was conducted for comparison. The adjusted-random-index (ARI) measured the similarity between classification methods. The OSL film, produced by Agfa N.V., was calibrated using a 6 MV TrueBeam linac. It was then used to measure treatments in an MULTICube phantom (IBA). Readout was performed in a CR-15 scanner. The local dose difference distribution between the measurement and treatment was characterized using a rational function. Class-specific corrections were developed by averaging the parameters of the rational function for each class as determined by the clustering, manual, and random classification methods. Dosimetric performances were evaluated within 20% and 50% isodose lines (D20% and D50%) before and after correction.

RESULTS

The clustering method identified eight clusters (WCSS = 119 silhouette = 0.6) when representing data in three principal components, that is, 75% of the data variance. No significant similarity was found between clustering results and manual classification methods (ARI < 0.01). Manual classifications are subject to interoperator variability. In fact, we found moderate similarity between classes and variations in the number of classes, ranging from 9 to 16. Uncorrected global dose difference (%) had mean value 0.9% ± 4.1% within D20%, with 47 and 34 treatments resulting in dose difference below 3% within D20% and D50%, respectively. After class-specific correction, the clustering method had mean dose differences (%) -0.2% ± 2.0%. The removal of the skewness in the corrected pixel-to-pixel dose difference distribution indicated an effective reduction of the OSL over-response. 88 and 74 treatments had corrected mean dose difference below 3% within D20% and D50%, respectively. Similar average dosimetric improvements were found only for the 16 manual class-solution, which however still showed a moderate skewness (0.1) after correction. Both, automated and manual class assignment preform better than the random assignment.

CONCLUSIONS

Eight treatment class-solutions corrected the energy-dependent response of an OSL film used for PSQA measurements. Clustering classification methods, based on quantitative treatment information, yielded better dosimetric results compared to qualitative classification techniques.

摘要

背景

放射治疗中的患者特异性质量保证(PSQA)需要高分辨率剂量测定法,以验证个性化调强放射治疗(IMRT)和容积调强弧形治疗(VMAT)中剂量传递的准确性。一种采用BaFBr:Eu磷光体制成的新型光激发发光(OSL)薄膜剂量计,提供亚毫米空间分辨率。然而,其能量依赖性响应需要校正。此前,针对一类前列腺癌治疗提出了一种校正方法,假设该类治疗中OSL能量响应相似。

目的

本研究使用综合放射治疗数据集探索其他类特异性校正方法。基于治疗参数的相似性形成新的类别,无需基于用户的分类。

方法

数据集包括针对三种不同瓦里安直线加速器类型(2台Halcyon、2台TrueBeam和1台TrueBeam STx)的101个IMRT和VMAT治疗计划。治疗类别基于K均值聚类算法,该算法利用以主成分表示的十二个定量治疗参数。使用组内平方和(WCSS)来确定最佳类别数量并防止数据过拟合。将这种对类别的客观分配与经验丰富的医学物理学家和剂量师进行的三种独立手动分类进行比较。此外,还进行了随机类别分配以作比较。调整随机指数(ARI)测量分类方法之间的相似性。由爱克发公司生产的OSL薄膜,使用6 MV TrueBeam直线加速器进行校准。然后将其用于在MULTICube体模(IBA)中测量治疗。在CR-15扫描仪中进行读数。使用有理函数表征测量值与治疗值之间的局部剂量差异分布。通过对聚类、手动和随机分类方法确定的每个类别的有理函数参数求平均值,开发类特异性校正方法。在20%和50%等剂量线(D20%和D50%)内校正前后评估剂量测定性能。

结果

当用三个主成分表示数据时,聚类方法识别出八个聚类(WCSS = 119,轮廓系数 = 0.6),即数据方差的75%。聚类结果与手动分类方法之间未发现显著相似性(ARI < 0.01)。手动分类存在操作者间差异。实际上,我们发现类别之间存在适度相似性,类别数量在9到16之间变化。在D20%内,未校正的全局剂量差异(%)平均值为0.9% ± 4.1%,分别有47和34次治疗在D20%和D50%内剂量差异低于3%。经过类特异性校正后,聚类方法的平均剂量差异(%)为 -0.2% ± 2.0%。校正后的像素间剂量差异分布中偏度的消除表明OSL过度响应得到有效降低。在D20%和D50%内,分别有88和74次治疗校正后的平均剂量差异低于3%。仅在16类手动分类解决方案中发现了类似的平均剂量测定改善,但校正后仍显示出适度的偏度(0.1)。自动和手动类别分配均比随机分配表现更好。

结论

八种治疗类别解决方案校正了用于PSQA测量的OSL薄膜的能量依赖性响应。基于定量治疗信息的聚类分类方法,与定性分类技术相比,产生了更好的剂量测定结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验