Kang Seonghyun, Park Jin-Woo, Kim Yekwang, Moon Juhui, Lee Yeji, Lee Chan-Nyoung, Kim Jaewook, Kim Seung-Jong, Kim Byung-Jo
Department of Biomedical Engineering, Korea University College of Medicine, Seoul, Korea.
Department of Neurology, Korea University Medicine, Seoul, Korea.
J Neuroeng Rehabil. 2025 Jun 4;22(1):127. doi: 10.1186/s12984-025-01657-1.
Parkinson's disease (PD) is characterized by significant postural instability and gait impairments, yet many individuals with PD can continue cycling even with severe gait dysfunction. While previous research has investigated the preservation of pedaling ability, how individuals with PD regulate and adapt their balance control strategies during cycling remains largely unexplored. This study aims to identify the biomechanical adaptations in cycling balance control employed by individuals with PD and how they differ from those of healthy individuals.
A total of 39 PD patients and 42 age-matched healthy controls participated in a cycling task using a steerable indoor cycling system that enables sliding and tilting motions, requiring them to actively maintain balance while following a straight-line trajectory. Cycling dynamics were analyzed using a sensor-equipped system designed to capture medio-lateral balance adjustments, including force exertion on the handlebars and saddle, lateral deviations, and pedaling speed.
PD patients exhibited a higher coordination of upper and lower body in the medio-lateral direction (PD: 0.47 ± 0.18 vs. Control: 0.11 ± 0.30, p < 0.001), suggesting a stronger reliance on a leaning strategy for balance control. While PD patients cycled at a significantly lower freely chosen speed (6.49 ± 1.45 km/h vs. 10.28 ± 3.00 km/h, p < 0.001), their bike deviation was lower than that of healthy controls (PD: 17.1 ± 9.9 mm vs. Control: 22.8 ± 11.7 mm, p = 0.019), indicating a more constrained and controlled cycling pattern. Additionally, force distribution patterns and bike speed showed strong correlations with physical function measures, including lower limb strength and gait velocity.
This study identifies distinct cycling balance adaptations in PD, providing insights into how individuals with PD regulate and modify their balance control strategies during cycling. The quantitative metrics derived from this study may offer a basis for future research exploring their potential as biomechanical markers for objective functional assessment and rehabilitation monitoring in PD.
帕金森病(PD)的特征是显著的姿势不稳和步态障碍,然而许多PD患者即使存在严重的步态功能障碍仍能继续骑自行车。虽然先前的研究已经调查了蹬踏能力的保留情况,但PD患者在骑自行车过程中如何调节和适应其平衡控制策略在很大程度上仍未得到探索。本研究旨在确定PD患者在骑自行车平衡控制中所采用的生物力学适应性,以及这些适应性与健康个体的差异。
共有39名PD患者和42名年龄匹配的健康对照者参与了一项使用可转向室内自行车系统的骑行任务,该系统能够进行滑动和倾斜运动,要求他们在沿着直线轨迹骑行时积极保持平衡。使用配备传感器的系统分析骑行动力学,该系统旨在捕捉中-侧平衡调整,包括在车把和车座上施加的力、横向偏差和蹬踏速度。
PD患者在中-侧方向上表现出更高的上下身协调性(PD组:0.47±0.18,对照组:0.11±0.30,p<0.001),表明在平衡控制上更依赖于倾斜策略。虽然PD患者以明显更低的自由选择速度骑行(6.49±1.45千米/小时对10.28±3.00千米/小时,p<0.001),但其自行车偏差低于健康对照者(PD组:17.1±9.9毫米对对照组:22.8±11.7毫米,p=0.019),表明骑行模式更受约束且更可控。此外,力分布模式和自行车速度与身体功能指标,包括下肢力量和步态速度,显示出强相关性。
本研究确定了PD患者独特的骑行平衡适应性,为了解PD患者在骑行过程中如何调节和修改其平衡控制策略提供了见解。本研究得出的定量指标可能为未来研究提供基础,探索其作为PD客观功能评估和康复监测生物力学标志物的潜力。