Li Runjia, Ernst Jason
Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
Genome Biol. 2025 Jun 4;26(1):156. doi: 10.1186/s13059-025-03619-1.
Whole-genome sequencing (WGS) data has facilitated genome-wide identification of rare noncoding variants. However, elucidating these variants' associations with complex diseases remains challenging. A previous study utilized a deep-learning-based framework and reported a significant brain-related association signal of autism spectrum disorder (ASD) detected from de novo noncoding variants in the Simons Simplex Collection (SSC) WGS cohort.
We revisit the reported significant brain-related ASD association signal attributed to deep-learning and show that local GC content can capture similar association signals. We further show that the association signal appears driven by variants from male proband-female sibling pairs that are upstream of assigned genes. We then develop Expression Neighborhood Sequence Association Study (ENSAS), which utilizes gene expression correlations and sequence information, to more systematically identify phenotype-associated variant sets. Applying ENSAS to the same set of de novo variants, we identify gene expression-based neighborhoods showing significant ASD association signal, enriched for synapse-related gene ontology terms. For these top neighborhoods, we also identify chromatin state annotations of variants that are predictive of the proband-sibling local GC content differences.
Overall, our work simplifies a previously reported ASD signal and provides new insights into associations of noncoding de novo mutations in ASD. We also present a new analytical framework for understanding disease impact of de novo mutations, applicable to other phenotypes.
全基因组测序(WGS)数据有助于在全基因组范围内识别罕见的非编码变异。然而,阐明这些变异与复杂疾病的关联仍然具有挑战性。先前的一项研究使用了基于深度学习的框架,并报告了在西蒙斯单纯型病例集(SSC)WGS队列中从新生非编码变异中检测到的与自闭症谱系障碍(ASD)显著相关的大脑相关信号。
我们重新审视了所报道的归因于深度学习的与大脑相关的ASD显著关联信号,并表明局部GC含量可以捕获类似的关联信号。我们进一步表明,该关联信号似乎是由分配基因上游的男性先证者-女性同胞对中的变异驱动的。然后,我们开发了表达邻域序列关联研究(ENSAS),该研究利用基因表达相关性和序列信息,更系统地识别与表型相关的变异集。将ENSAS应用于同一组新生变异,我们识别出显示出显著ASD关联信号的基于基因表达的邻域,这些邻域富含与突触相关的基因本体术语。对于这些顶级邻域,我们还识别出可预测先证者-同胞局部GC含量差异的变异的染色质状态注释。
总体而言,我们的工作简化了先前报道的ASD信号,并为ASD中新生非编码突变的关联提供了新的见解。我们还提出了一个新的分析框架,用于理解新生突变对疾病的影响,该框架适用于其他表型。