Suppr超能文献

基于人工智能驱动的电生理复杂性分析的心房颤动治疗分层

Atrial Fibrillation Treatment Stratification Based on Artificial Intelligence-Driven Analysis of the Electrophysiological Complexity.

作者信息

de la Nava Ana María Sánchez, Ros Santiago, Carta Alejandro, González-Torrecilla Esteban, Mansilla Ana González, Bermejo Javier, Arenal Ángel, Climent Andreu M, Guillem María S, Atienza Felipe

机构信息

Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.

CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Spain.

出版信息

J Cardiovasc Electrophysiol. 2025 Aug;36(8):1903-1912. doi: 10.1111/jce.16754. Epub 2025 Jun 4.

Abstract

BACKGROUND

Atrial Fibrillation (AF) treatment strategies are suboptimal and clinical predictors of success are limited. Artificial Intelligence (AI) has arisen as a powerful tool for treatment efficacy prediction.

OBJECTIVE

We developed an AI-driven platform for the stratification of patients based on noninvasive Electrocardiographic Imaging (ECGI) biomarkers and clinical parameters to evaluate and predict optimal patient treatment.

METHODS

We evaluated 204 patients treated according to clinical guidelines and characterized them at the electrophysiological level using ECGI recordings during AF. ECGI signals were calculated to obtain frequency and rotational biomarkers. Baseline clinical characteristics and treatment after inclusion were registered.

RESULTS

A clustering algorithm was calibrated taking three different variables for 1 year outcome prediction: (1) AF type (paroxysmal or persistent); (2) ECGI complexity score (calculated based on highest dominant frequency, median dominant frequency, and mean rotor time); and (3) type of treatment: rhythm control (drugs, AF ablation) or rate control. The cluster analysis classified patients into five groups: Low electrophysiological complexity patterns were associated with an improved outcome after ablation, regardless of the time duration of the AF. Intermediate complexity scores in paroxysmal AF had a favourable outcome with rhythm control treatments, but not in persistent AF patients. Cluster patterns with higher electrophysiological complexity were associated with a higher probability of AF recurrence, both in paroxysmal and persistent groups. The performance of the algorithm predicting the outcome was (AUC: 0.73 (0.63-0.81)), increasing overall performance with respect to conventional persistent and paroxysmal classification (AUC: 0.58 (0.48-0.68); p < 0.05). This algorithm was evaluated on the 20% test set, obtaining 90% prediction success.

CONCLUSIONS

AI-driven analysis that combined clinical information with ECGI biomarkers increased the performance of conventional classification methods for AF treatment stratification.

摘要

背景

心房颤动(AF)的治疗策略并不理想,且成功的临床预测指标有限。人工智能(AI)已成为预测治疗效果的强大工具。

目的

我们开发了一个由人工智能驱动的平台,用于根据无创心电图成像(ECGI)生物标志物和临床参数对患者进行分层,以评估和预测最佳患者治疗方案。

方法

我们评估了204例按照临床指南接受治疗的患者,并在房颤期间使用ECGI记录在电生理水平上对他们进行特征描述。计算ECGI信号以获得频率和旋转生物标志物。记录纳入后的基线临床特征和治疗情况。

结果

采用三种不同变量校准聚类算法以预测1年结局:(1)房颤类型(阵发性或持续性);(2)ECGI复杂性评分(基于最高主导频率、中位主导频率和平均转子时间计算);(3)治疗类型:节律控制(药物、房颤消融)或心率控制。聚类分析将患者分为五组:低电生理复杂性模式与消融后改善的结局相关,无论房颤持续时间如何。阵发性房颤的中等复杂性评分在节律控制治疗中有良好结局,但持续性房颤患者并非如此。电生理复杂性较高的聚类模式与阵发性和持续性组中房颤复发的较高概率相关。预测结局的算法性能为(曲线下面积[AUC]:0.73[0.63 - 0.81]),相对于传统的持续性和阵发性分类(AUC:0.58[0.48 - 0.68];p < 0.05),整体性能有所提高。该算法在20%的测试集上进行评估,预测成功率为90%。

结论

将临床信息与ECGI生物标志物相结合的人工智能驱动分析提高了房颤治疗分层传统分类方法的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79ce/12337632/6f13423294a7/JCE-36-1903-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验