Suppr超能文献

交叉点法与最小二乘法回归在通过淋巴流量分析计算膜蛋白通量参数中的比较

Comparison of crosspoint and least-squares regression methods in computation of membrane protein flux parameters from lymph flux analysis.

作者信息

Katz M A

出版信息

Microvasc Res. 1985 Sep;30(2):207-21. doi: 10.1016/0026-2862(85)90051-2.

Abstract

To compute two parameters of capillary protein transport of reflection coefficient (sigma) and permeability--surface area product (PS), two major methods have been employed. The first, or crosspoint method, uses two sets of lymph flow (Jv) and lymph/plasma protein concentration ratios (R) and solves the irreversible thermodynamic relationship between sigma and PS by simultaneous solution. The second, or least squares method, analyzes the total R versus Jv curve by finding a best fit of all points to the irreversible thermodynamic relationship of R versus Jv. Three theoretical membranes were analyzed with both methods by imposing random errors of 10 or 20% in R and Jv. It was found that such errors, especially in R, were associated with substantial decreases in the percent of successful computations by the crosspoint method. In tight membranes (sigma = 0.9) both methods gave comparable values. For intermediate (sigma = 0.5) and loose membranes (sigma = 0.2) the least-squares method was less specific than the crosspoint method, since up to 9% of random values of R and Jv would be included within the 95% limits for the method. Moreover, attributing homogeneous variance to input data and sampling Jv at geometric intervals exaggerated the variability of the least-squares method output parameters over those obtained by the crosspoint method. Because of nonspecificity, and the fact that the least squares method does not allow for the possibility that sigma and PS are direct functions of hydrostatic capillary pressure or Jv, the crosspoint method appears superior to the least-squares method for computation of sigma and PS from R and Jv.

摘要

为了计算反映系数(σ)和通透系数 - 表面积乘积(PS)这两个毛细血管蛋白质转运参数,人们采用了两种主要方法。第一种方法,即交叉点法,使用两组淋巴流量(Jv)和淋巴/血浆蛋白浓度比(R),并通过联立求解来解决σ和PS之间的不可逆热力学关系。第二种方法,即最小二乘法,通过找到所有点与R和Jv的不可逆热力学关系的最佳拟合来分析总R与Jv曲线。通过在R和Jv中施加10%或20%的随机误差,用这两种方法对三种理论膜进行了分析。结果发现,这样的误差,尤其是R中的误差,与交叉点法成功计算的百分比大幅下降有关。在紧密膜(σ = 0.9)中,两种方法得到的值相当。对于中等(σ = 0.5)和疏松膜(σ = 0.2),最小二乘法不如交叉点法特异,因为高达9%的R和Jv随机值会被包含在该方法的95%置信区间内。此外,将均匀方差归因于输入数据并以几何间隔采样Jv,夸大了最小二乘法输出参数相对于交叉点法所获得参数的变异性。由于非特异性,以及最小二乘法不考虑σ和PS可能是毛细血管静水压或Jv的直接函数这一事实,在从R和Jv计算σ和PS时,交叉点法似乎优于最小二乘法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验