Suppr超能文献

具有海胆形态的无粘结剂磷改性多相镍钴硫化物纳米结构用于高容量混合超级电容器及实际应用

Binder-Free Phosphorus-Modified Multiphase Ni-Co Sulfide Nanoarchitectures with Sea-Urchin Morphology for High-Capacity Hybrid Supercapacitors and Practical Applications.

作者信息

Kiran Ampasala Surya, Shankar Edugulla Girija, Nagaraju Manchi, Su Yu Jae

机构信息

Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-aero, Gihung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.

出版信息

ChemSusChem. 2025 Jul 27;18(15):e202500588. doi: 10.1002/cssc.202500588. Epub 2025 Jul 1.

Abstract

Owing to the high demand for advanced energy storage, the exceptional characteristics of transition metal sulfides have attracted great interest from researchers. Herein, phosphorus (P)-encapsulated nickel-cobalt sulfides (NCSs) prepared via a hydrothermal process and phosphorized in a tube furnace to produce P@NCS (with 20 mM sulfur source) are reported. The P@NCS material is synthesized through a meticulous multistep process, ensuring precise control of its material properties. Successful incorporation of P significantly enhances the electrochemical performance of the electrode. The electrochemical evaluation demonstrates the superior performance of the P@NCS electrode. Cyclic voltammetry and galvanostatic charge-discharge curves reveal enhanced oxidation/reduction behavior and high areal capacity. Electrochemical testing shows high redox reactions and decreased electrode-electrolyte resistance, and the P@NCS electrode can last for over 10000 cycles. A hybrid supercapacitor (HSC) constructed with P@NCS and activated carbon/nickel foam electrodes exhibits a specific capacitance of 95.93 F g at 3 mA cm. This HSC device demonstrates outstanding cycling stability, and it can efficiently store solar energy and continuously power electronic devices. This work emphasizes the potential of P@NCS electrode materials in advanced energy storage systems and provides a systematic and simple synthesis procedure with important implications for sustainable energy applications.

摘要

由于对先进储能的高需求,过渡金属硫化物的优异特性引起了研究人员的极大兴趣。在此,报道了通过水热法制备并在管式炉中进行磷化处理以制备P@NCS(硫源浓度为20 mM)的磷(P)封装的镍钴硫化物(NCSs)。P@NCS材料是通过精心设计的多步工艺合成的,确保了对其材料性能的精确控制。P的成功掺入显著提高了电极的电化学性能。电化学评估证明了P@NCS电极的优异性能。循环伏安法和恒电流充放电曲线显示出增强的氧化/还原行为和高面积容量。电化学测试表明存在高氧化还原反应且电极-电解质电阻降低,并且P@NCS电极可以持续超过10000次循环。用P@NCS与活性炭/泡沫镍电极构建的混合超级电容器(HSC)在3 mA cm时的比电容为95.93 F g。该HSC器件表现出出色的循环稳定性,并且能够有效地存储太阳能并持续为电子设备供电。这项工作强调了P@NCS电极材料在先进储能系统中的潜力,并提供了一种系统且简单的合成方法,对可持续能源应用具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f70/12302322/e88ad0391cfe/CSSC-18-e202500588-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验