Kiran Ampasala Surya, Shankar Edugulla Girija, Nagaraju Manchi, Su Yu Jae
Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-aero, Gihung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
ChemSusChem. 2025 Jul 27;18(15):e202500588. doi: 10.1002/cssc.202500588. Epub 2025 Jul 1.
Owing to the high demand for advanced energy storage, the exceptional characteristics of transition metal sulfides have attracted great interest from researchers. Herein, phosphorus (P)-encapsulated nickel-cobalt sulfides (NCSs) prepared via a hydrothermal process and phosphorized in a tube furnace to produce P@NCS (with 20 mM sulfur source) are reported. The P@NCS material is synthesized through a meticulous multistep process, ensuring precise control of its material properties. Successful incorporation of P significantly enhances the electrochemical performance of the electrode. The electrochemical evaluation demonstrates the superior performance of the P@NCS electrode. Cyclic voltammetry and galvanostatic charge-discharge curves reveal enhanced oxidation/reduction behavior and high areal capacity. Electrochemical testing shows high redox reactions and decreased electrode-electrolyte resistance, and the P@NCS electrode can last for over 10000 cycles. A hybrid supercapacitor (HSC) constructed with P@NCS and activated carbon/nickel foam electrodes exhibits a specific capacitance of 95.93 F g at 3 mA cm. This HSC device demonstrates outstanding cycling stability, and it can efficiently store solar energy and continuously power electronic devices. This work emphasizes the potential of P@NCS electrode materials in advanced energy storage systems and provides a systematic and simple synthesis procedure with important implications for sustainable energy applications.
由于对先进储能的高需求,过渡金属硫化物的优异特性引起了研究人员的极大兴趣。在此,报道了通过水热法制备并在管式炉中进行磷化处理以制备P@NCS(硫源浓度为20 mM)的磷(P)封装的镍钴硫化物(NCSs)。P@NCS材料是通过精心设计的多步工艺合成的,确保了对其材料性能的精确控制。P的成功掺入显著提高了电极的电化学性能。电化学评估证明了P@NCS电极的优异性能。循环伏安法和恒电流充放电曲线显示出增强的氧化/还原行为和高面积容量。电化学测试表明存在高氧化还原反应且电极-电解质电阻降低,并且P@NCS电极可以持续超过10000次循环。用P@NCS与活性炭/泡沫镍电极构建的混合超级电容器(HSC)在3 mA cm时的比电容为95.93 F g。该HSC器件表现出出色的循环稳定性,并且能够有效地存储太阳能并持续为电子设备供电。这项工作强调了P@NCS电极材料在先进储能系统中的潜力,并提供了一种系统且简单的合成方法,对可持续能源应用具有重要意义。