Saleem Shumaila, Khalid Sadia, Nazir Aalia, Khan Yaqoob, Ahmad Imtiaz
Institute of Physics, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan.
Nanosciences & Technology Department, National Centre for Physics, Quaid-e-Azam University Campus Shahdra Valley Road Islamabad 45320 Pakistan
RSC Adv. 2025 Jul 11;15(30):24331-24349. doi: 10.1039/d5ra01710f. eCollection 2025 Jul 10.
Transition metal sulfides exhibit excellent electrochemical performance and electrochemical energy storage capacity. Herein, we present high-capacity supercapacitor electrode based on copper doped zinc sulfide/graphene (ZCG) synthesized by co-precipitation method. Various techniques have been employed to characterize the ZCG nanocomposite including electrochemical measurements. The ZCG nanocomposites exhibit high crystallinity and phase purity. In three-electrode system and 1 M aqueous KOH solution, the prepared ZCG electrodes are evaluated using galvanostatic charge-discharge cycles (GCD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The ZCG electrode exhibits an ultrahigh specific capacitance of 2295 F g at a relatively low scan rate of 5 mV s from CV and 743 F g at 100 A g from GCD, with exceptional cycling stability (93% capacity retention after 1000 cycles). Furthermore, the ZCG10 symmetric coin cell exhibits a specific capacitance, energy density, power density of 130.8 F g, 18 W h kg, 2400 W kg at current density of 1.2 A g in a 1 M KOH solution from GCD. The ZCG hybrid electrode material can be predicted a potential hybrid electrode material for the future development of energy storage devices.
过渡金属硫化物具有优异的电化学性能和电化学储能容量。在此,我们展示了一种基于通过共沉淀法合成的铜掺杂硫化锌/石墨烯(ZCG)的高容量超级电容器电极。已采用各种技术对ZCG纳米复合材料进行表征,包括电化学测量。ZCG纳米复合材料具有高结晶度和相纯度。在三电极体系和1 M氢氧化钾水溶液中,使用恒电流充放电循环(GCD)、循环伏安法(CV)和电化学阻抗谱(EIS)对制备的ZCG电极进行评估。从CV曲线来看,ZCG电极在相对较低的扫描速率5 mV s时表现出2295 F g的超高比电容,从GCD曲线来看,在100 A g时为743 F g,具有出色的循环稳定性(1000次循环后容量保持率为93%)。此外,在1 M氢氧化钾溶液中,ZCG10对称硬币电池在1.2 A g的电流密度下,从GCD曲线得到的比电容、能量密度、功率密度分别为130.8 F g、18 W h kg、2400 W kg。ZCG混合电极材料有望成为未来储能器件发展的一种潜在混合电极材料。