Naji Qamar Mohammed, Zulperi Dzarifah Mohamed, Ahmad Khairulmazmi, Hata Erneeza Mohd
Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
Directorate of the Planting of Holy Karbala, Iraqi Ministry of Agriculture, Karbala 56001, Iraq.
Plant Pathol J. 2025 Jun;41(3):253-265. doi: 10.5423/PPJ.OA.12.2024.0188. Epub 2025 Jun 1.
Bacterial panicle blight (BPB), caused by the aerobic Gram-negative bacterium Burkholderia glumae, poses a significant threat to global rice production. Cinnamon bark extract (CBE), rich in bioactive compounds such as eugenol and cinnamaldehyde, exhibits potent antioxidant and antimicrobial properties. To enhance the stability and efficacy of these volatile compounds, this study employed nanoencapsulation techniques. CBE-loaded nanoformulations were synthesized using the ionic coupling method between chitosan (CS) and trisodium phosphate (TPP) at varying TPP concentrations (0%, 0.5%, 1%, 2%, and 4%), resulting in CBE-CS nanoparticles. The nanoformulations were evaluated for antibacterial activity, chemical composition, and morphological characteristics. The antibacterial assays demonstrated inhibition zones ranging from 7.5 to 11.8 mm, with the 0.5% TPP formulation exhibiting the highest efficacy (minimum inhibitory concentration = 15.6 μmol/mL; minimum bactericidal concentration = 31.25 μmol/mL). Chemical analysis identified over 15 active compounds in CBE, with (Z)-3-phenylacrylaldehyde being the most abundant (34%). The nanoparticles had sizes ranging from 43.66 nm to 106.1 nm, encapsulation efficiencies of 48.65-48.78%, and loading capacities of 25.65-33.9%. Scanning electron microscopy revealed spherical, homogenous nanoparticles, while Fourier transform infrared and X-ray diffraction confirmed the successful encapsulation of CBE within CS nanoparticles. Microscopic examination revealed significant membrane damage in B. glumae cells treated with CBE-loaded nanoparticles compared to untreated controls. These findings underscore the potential of CBE-loaded CS nanoencapsulation as an effective, ecofriendly solution for managing BPB. The study highlights the promise of nanoencapsulation techniques in enhancing the stability and bioactivity of natural antimicrobial agents, offering a sustainable alternative to traditional chemical controls in agriculture.
由需氧革兰氏阴性细菌伯克霍尔德氏菌引起的细菌性颖枯病(BPB)对全球水稻生产构成重大威胁。肉桂树皮提取物(CBE)富含丁香酚和肉桂醛等生物活性化合物,具有强大的抗氧化和抗菌特性。为提高这些挥发性化合物的稳定性和功效,本研究采用了纳米包封技术。使用壳聚糖(CS)和磷酸三钠(TPP)在不同TPP浓度(0%、0.5%、1%、2%和4%)下的离子偶联法合成了负载CBE的纳米制剂,得到了CBE-CS纳米颗粒。对纳米制剂的抗菌活性、化学成分和形态特征进行了评估。抗菌试验显示抑菌圈范围为7.5至11.8毫米,其中0.5% TPP制剂表现出最高的功效(最低抑菌浓度 = 15.6 μmol/mL;最低杀菌浓度 = 31.25 μmol/mL)。化学分析确定CBE中有超过15种活性化合物,其中(Z)-3-苯基丙烯醛含量最高(34%)。纳米颗粒的尺寸范围为43.66纳米至106.1纳米,包封效率为48.65 - 48.78%,载药量为25.65 - 33.9%。扫描电子显微镜显示为球形、均匀的纳米颗粒,而傅里叶变换红外光谱和X射线衍射证实CBE成功包封在CS纳米颗粒中。显微镜检查显示,与未处理的对照相比,用负载CBE的纳米颗粒处理的伯克霍尔德氏菌细胞出现了明显的膜损伤。这些发现强调了负载CBE的CS纳米包封作为一种有效、环保的解决方案来防治BPB的潜力。该研究突出了纳米包封技术在提高天然抗菌剂稳定性和生物活性方面的前景,为农业中传统化学防治提供了一种可持续的替代方案。