Koul Bhupendra, Poonia Anil Kumar, Yadav Dhananjay, Jin Jun-O
School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India.
Centre for Plant Biotechnology, CCSHAU, Hisar 125004, Haryana, India.
Biomolecules. 2021 Jun 15;11(6):886. doi: 10.3390/biom11060886.
Nanotechnology is the science of nano-sized particles/structures (~100 nm) having a high surface-to-volume ratio that can modulate the physical, chemical and biological properties of the chemical compositions. In last few decades, nanoscience has attracted the attention of the scientific community worldwide due to its potential uses in the pharmacy, medical diagnostics and disease treatment, energy, electronics, agriculture, chemical and space industries. The properties of nanoparticles (NPs) are size and shape dependent. These characteristic features of nanoparticles can be explored for various other applications such as computer transistors, chemical sensors, electrometers, memory schemes, reusable catalysts, biosensing, antimicrobial activity, nanocomposites, medical imaging, tumor detection and drug delivery. Therefore, synthesizing nanoparticles of desired size, structure, monodispersity and morphology is crucial for the aforementioned applications. Recent advancements in nanotechnology aim at the synthesis of nanoparticles/materials using reliable, innoxious and novel ecofriendly techniques. In contrast to the traditional methods, the biosynthesis of nanoparticles of a desired nature and structure using the microbial machinery is not only quicker and safer but more environmentally friendly. Various microbes, including bacteria, actinobacteria, fungi, yeast, microalgae and viruses, have recently been explored for the synthesis of metal, metal oxide and other important NPs through intracellular and extracellular processes. Some bacteria and microalgae possess specific potential to fabricate distinctive nanomaterials such as exopolysaccharides, nanocellulose, nanoplates and nanowires. Moreover, their ability to synthesize nanoparticles can be enhanced using genetic engineering approaches. Thus, the use of microorganisms for synthesis of nanoparticles is unique and has a promising future. The present review provides explicit information on different strategies for the synthesis of nanoparticles using microbial cells; their applications in bioremediation, agriculture, medicine and diagnostics; and their future prospects.
纳米技术是关于纳米级颗粒/结构(约100纳米)的科学,这些颗粒/结构具有高的表面积与体积比,能够调节化学成分的物理、化学和生物学性质。在过去几十年中,纳米科学因其在制药、医学诊断与疾病治疗、能源、电子、农业、化工和航天工业等领域的潜在用途而吸引了全球科学界的关注。纳米颗粒(NPs)的性质取决于其大小和形状。纳米颗粒的这些特征可用于各种其他应用,如计算机晶体管、化学传感器、静电计、存储方案、可重复使用的催化剂、生物传感、抗菌活性、纳米复合材料、医学成像、肿瘤检测和药物递送。因此,合成具有所需尺寸、结构、单分散性和形态的纳米颗粒对于上述应用至关重要。纳米技术的最新进展旨在使用可靠、无害且新颖的生态友好技术合成纳米颗粒/材料。与传统方法相比,利用微生物机制生物合成具有所需性质和结构的纳米颗粒不仅更快、更安全,而且更环保。最近,人们探索了各种微生物,包括细菌、放线菌、真菌、酵母、微藻和病毒,通过细胞内和细胞外过程合成金属、金属氧化物和其他重要的纳米颗粒。一些细菌和微藻具有制造独特纳米材料的特定潜力,如胞外多糖、纳米纤维素、纳米板和纳米线。此外,利用基因工程方法可以增强它们合成纳米颗粒的能力。因此,利用微生物合成纳米颗粒是独特的,并且具有广阔的前景。本综述提供了关于使用微生物细胞合成纳米颗粒的不同策略的明确信息;它们在生物修复、农业、医学和诊断中的应用;以及它们的未来前景。