Liu Ying, Hu Peijun, Wang Haifeng
State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, China.
School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast BT9 5AG, UK.
Phys Chem Chem Phys. 2025 Jun 18;27(24):12929-12937. doi: 10.1039/d5cp01330e.
The Fe-based Fenton reaction is pivotal in generating reactive oxidative species (ROS) such as OH˙ radicals and iron-oxo FeO to degrade wastewater pollutants, yet the selectivity origin of ROS remains debated. Using molecular dynamics and microkinetic modeling, we investigate the atomic-level Fenton reaction mechanism catalyzed by the Fe-complex [(Cl)Fe(HO)] in aqueous solution to quantify ROS activity and selectivity. We demonstrate that Fe is first reduced to Fe HO deprotonation and OOH˙ release, after which Fe enables O-O bond cleavage of a second HO, producing OH˙ and Fe-OH. The Fe-OH intermediate can either be protonated or oxidized by OH˙ to form FeO, driving a pH-dependent selectivity switch: OH˙ dominates at pH < 2.5, while FeO prevails at pH > 2.5. Moreover, Fe-complex ligands regulate Fe-OH stability and affect ROS selectivity/activity by modulating the OH intermediate binding strength, which linearly correlates with the O-O bond cleavage barrier and OH˙ desorption kinetics. Comparing homogeneous Fe-complex catalysis to the state-of-the-art heterogeneous FeOCl, we highlight that optimized OH binding at the Fe⋯Fe dual site of FeOCl facilitates O-O bond cleavage while ensuring efficient OH˙ desorption, leading to higher activity. These findings provide atomic-level insights into pH-dependent ROS selectivity and ligand effects, advancing our understanding of both homogeneous and heterogeneous Fenton catalysis.
铁基芬顿反应在生成诸如羟基自由基(OH˙)和铁氧物种(FeO)等活性氧(ROS)以降解废水污染物方面起着关键作用,然而ROS的选择性来源仍存在争议。我们使用分子动力学和微观动力学模型,研究了水溶液中由铁络合物[(Cl)Fe(HO)]催化的原子级芬顿反应机制,以量化ROS的活性和选择性。我们证明,铁首先被还原为Fe,随后发生去质子化和OOH˙释放,之后Fe促使第二个HO的O - O键断裂,生成OH˙和Fe - OH。Fe - OH中间体既可以被质子化,也可以被OH˙氧化形成FeO,从而驱动一个依赖于pH的选择性转变:在pH < 2.5时OH˙占主导,而在pH > 2.5时FeO占主导。此外,铁络合物配体通过调节OH中间体的结合强度来调节Fe - OH的稳定性并影响ROS的选择性/活性,这与O - O键断裂势垒和OH˙解吸动力学呈线性相关。将均相铁络合物催化与最先进的非均相FeOCl进行比较,我们强调,在FeOCl的Fe⋯Fe双位点处优化的OH结合促进了O - O键的断裂,同时确保了高效的OH˙解吸,从而导致更高的活性。这些发现为pH依赖的ROS选择性和配体效应提供了原子水平的见解,推进了我们对均相和非均相芬顿催化的理解。