Suppr超能文献

不同特质抑郁水平下失眠症状与自杀意念之间的差异方向效应:中国医学本科生的交叉滞后网络分析

Differential directional effects between insomnia symptoms and suicidal ideation across trait depression levels: a cross-lagged network analysis among Chinese medical undergraduates.

作者信息

Zhang Jingxuan, Zhang Xiaolin, Hu Feng, Li Kuiliang, Luo Mengjie, Yu Yang, Feng Zhengzhi

机构信息

School of Psychology, Army Medical University, Chongqing, China.

Experimental Research Center of Medical and Psychological Science (ERC-MPS), School of Psychology, Army Medical University, Chongqing, China.

出版信息

Front Psychiatry. 2025 May 21;16:1581827. doi: 10.3389/fpsyt.2025.1581827. eCollection 2025.

Abstract

BACKGROUND

Suicidal ideation (SI) is intricately linked with insomnia and trait depression, yet the directional relationships and the role of trait depression remain unclear. This study sought to investigate the dynamic interplay between insomnia symptoms, SI, and trait depression (including trait anhedonia (TAN) and trait dysthymia (TDY)), aiming to clarify the role of trait depression in the relationship between insomnia and SI.

METHODS

A longitudinal design was employed to assess 566 undergraduate students (aged 18-25) recruited from a medical university in China. Participants underwent comprehensive assessments with a one-month interval between baseline and follow-up, applying the Athens Insomnia Scale (AIS), the Self-rating Idea of Suicide Scale (SIOSS), and the Trait Depression Scale (TDS). Cross-lagged panel network (CLPN) models were implemented to examine temporal associations, centrality metrics, and network differences between high/low TAN and TDY subgroups. Network stability was evaluated using bootstrap methods.

RESULTS

Insomnia symptoms, particularly AIS6 (sense of well-being during the day) and AIS7 (functioning), emerged as pivotal nodes significantly predicting SI factors, including despair (DSP) and suicide (SUI), with bidirectional feedback observed. TAN emerged as a central node, strongly influenced by insomnia and SI. TDY primarily influenced TAN and optimism (OPT). In the high-TAN group, OPT was a mediator among the nodes, OPT, AIS2 (awakening during the night), and AIS7 were key bridging nodes, whereas AIS3 (final awakening earlier than desired), AIS8 (sleepiness during the day), and DSP bridged in the low-TAN group. High/low TDY networks exhibited structural congruence but significant differences in bridge centrality rankings.

CONCLUSION

Insomnia symptoms exacerbate SI by impairing daytime functioning and emotional regulation, with trait anhedonia serving as a critical node. Personalized interventions targeting specific insomnia symptoms (e.g., AIS6, AIS7 or AIS8) and suicidal emotional factors (e.g., OPT or DSP) are crucial disrupting feedback loops or critical connections to reduce suicide risk, particularly in individuals with varying levels of trait anhedonia. Although medical undergraduates represent a population commonly affected by mental health problems, the specialized nature of our sample may limit the generalizability of our findings. Future research and validation should be conducted in more diverse populations.

摘要

背景

自杀意念(SI)与失眠和特质性抑郁密切相关,但特质性抑郁的方向性关联及作用仍不明确。本研究旨在探讨失眠症状、自杀意念和特质性抑郁(包括特质性快感缺乏(TAN)和特质性心境恶劣(TDY))之间的动态相互作用,以阐明特质性抑郁在失眠与自杀意念关系中的作用。

方法

采用纵向设计,对从中国一所医科大学招募的566名本科生(年龄18 - 25岁)进行评估。参与者在基线和随访之间间隔一个月接受全面评估,使用雅典失眠量表(AIS)、自杀自评量表(SIOSS)和特质性抑郁量表(TDS)。实施交叉滞后面板网络(CLPN)模型来检验高/低TAN和TDY亚组之间的时间关联、中心性指标和网络差异。使用自助法评估网络稳定性。

结果

失眠症状,尤其是AIS6(白天的幸福感)和AIS7(功能),成为显著预测自杀意念因素(包括绝望(DSP)和自杀(SUI))的关键节点,观察到双向反馈。TAN成为一个中心节点,受到失眠和自杀意念的强烈影响。TDY主要影响TAN和乐观(OPT)。在高TAN组中,OPT是节点之间的中介,OPT、AIS2(夜间觉醒)和AIS7是关键的桥接节点,而在低TAN组中,AIS3(比期望更早最终觉醒)、AIS8(白天嗜睡)和DSP起到桥接作用。高/低TDY网络表现出结构一致性,但在桥接中心性排名上存在显著差异。

结论

失眠症状通过损害白天功能和情绪调节加重自杀意念,特质性快感缺乏是一个关键节点。针对特定失眠症状(如AIS6、AIS7或AIS8)和自杀性情绪因素(如OPT或DSP)进行个性化干预对于破坏反馈回路或关键连接以降低自杀风险至关重要,尤其是在特质性快感缺乏程度不同的个体中。虽然医学本科生是通常受心理健康问题影响的人群,但我们样本的特殊性可能会限制我们研究结果的普遍性。未来的研究和验证应在更多样化的人群中进行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a10/12133867/26e54219e16d/fpsyt-16-1581827-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验