Suppr超能文献

一种社区参与式开发通用数据元素的方法:来自RADx-UP长期新冠通用数据元素特别工作组的案例研究

A community-engaged approach to developing common data elements: a case study from the RADx-UP Long COVID common data elements Task Force.

作者信息

Pike Welch Helena L, Guest Gregory, Garba Halima, Carrillo Gabriel A, Damman Allyn M, Kibbe Warren A

机构信息

Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC 27701, United States.

Center for Health Equity Research, University of North Carolina, Chapel Hill, NC 27516, United States.

出版信息

JAMIA Open. 2025 Jun 4;8(3):ooaf046. doi: 10.1093/jamiaopen/ooaf046. eCollection 2025 Jun.

Abstract

OBJECTIVES

In response to requests from several Rapid Acceleration of Diagnostics-Underserved Populations (RADx-UP) community-engaged research projects to include Long COVID common data elements (CDEs) in the existing RADx-UP CDEs, the RADx-UP Coordination and Data Collection Center (CDCC) leadership formed the Long COVID CDEs Task Force.

MATERIALS AND METHODS

The Task Force, composed mainly of community partners and RADx-UP project members, participated in various activities to evaluate the Long COVID CDEs fit for purpose from the Researching COVID to Enhance Recovery (RECOVER) program for RADx-UP use.

RESULTS AND DISCUSSION

The Task Force's efforts led to a compilation of lessons learned and the creation of a novel set of 28 CDEs that are appropriate for community-engaged research in Long COVID.

CONCLUSION

Utilization of standardized CDEs does not always work for the communities involved in the research, but creation of a community-involved task force can lead to a meaningful, rich set of CDEs.

摘要

目标

应多个快速加速诊断——服务不足人群(RADx-UP)社区参与研究项目提出的在现有RADx-UP通用数据元素(CDE)中纳入长新冠通用数据元素的请求,RADx-UP协调与数据收集中心(CDCC)领导层成立了长新冠CDE任务组。

材料与方法

该任务组主要由社区合作伙伴和RADx-UP项目成员组成,参与了各种活动,以评估从“研究新冠以促进康复(RECOVER)”项目中选取的、适合RADx-UP使用的长新冠CDE是否适用。

结果与讨论

任务组的努力带来了经验教训的汇总,并创建了一套全新的28个CDE,适用于长新冠社区参与研究。

结论

使用标准化CDE对参与研究的社区并不总是有效,但成立一个社区参与的任务组可以带来一套有意义、丰富的CDE。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e800/12136053/736f37fe89df/ooaf046f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验