Osumi Ryosuke, Mai Thanh-Tam, Tsunoda Katsuhiko, Urayama Kenji
Department of Polymer Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
Department of Material Chemistry, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
Soft Matter. 2025 Jun 25;21(25):5080-5088. doi: 10.1039/d5sm00341e.
We investigate the impact of strain biaxiality on strain induced crystallization (SIC) at elevated temperatures in natural rubber (NR) and synthetic isoprene rubber (IR). By comparing uniaxial (U) and pseudo-planar (P) stretching under different lateral contraction conditions, we find that the upper-limit ambient temperature for SIC-induced reinforcement in the P-geometry is more than 20 °C lower than in the U-geometry. Similarly, the melting temperature of SIC crystallites in the P-geometry is reduced by over 30 °C compared to the U-geometry. These findings demonstrate that finite lateral stretch significantly suppresses both the onset temperature and thermal stability of SIC-induced reinforcement. Our results reveal that strain biaxiality plays a pivotal role in SIC not only at room temperature, as previously recognized, but also under high temperature conditions. These strain biaxiality effects are more pronounced in IR than in NR. Furthermore, elevated-temperature fracture experiments reveal a non-linear crack propagation pattern in the P-geometry: local deformation transitions from planar to pseudo-uniaxial toward the specimen edge, where higher crystallinity forms a barrier. Cracks bifurcate to circumvent these regions, highlighting the critical role of spatial SIC heterogeneity in fracture resistance. Our results offer valuable insights into SIC mechanisms and contribute to the development of SIC-rubber materials with enhanced durability under complex deformation and high-temperature conditions.
我们研究了应变双轴性对天然橡胶(NR)和合成异戊二烯橡胶(IR)在高温下应变诱导结晶(SIC)的影响。通过比较不同横向收缩条件下的单轴(U)拉伸和伪平面(P)拉伸,我们发现P几何形状中SIC诱导增强的上限环境温度比U几何形状低20℃以上。同样,与U几何形状相比,P几何形状中SIC微晶的熔点降低了30℃以上。这些发现表明,有限的横向拉伸显著抑制了SIC诱导增强的起始温度和热稳定性。我们的结果表明,应变双轴性不仅在室温下(如先前所认识到的),而且在高温条件下,在SIC中都起着关键作用。这些应变双轴性效应在IR中比在NR中更明显。此外,高温断裂实验揭示了P几何形状中的非线性裂纹扩展模式:局部变形从平面转变为伪单轴,朝向试样边缘,在那里较高的结晶度形成了一个障碍。裂纹分叉以避开这些区域,突出了空间SIC不均匀性在抗断裂中的关键作用。我们的结果为SIC机制提供了有价值的见解,并有助于开发在复杂变形和高温条件下具有增强耐久性的SIC橡胶材料。