Suppr超能文献

负载铋的BiVO₄中的共价桥实现快速电荷转移以高效光催化水氧化。

Covalent Bridges in Bi Loaded BiVO Enabling Rapid Charge Transfer for Efficient Photocatalytic Water Oxidation.

作者信息

Li Liyang, Chen Zhiming, Fang Dong, Low Jingxiang, Yi Jianhong

机构信息

Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China.

School of Physical Science and Technology, Tiangong University, Tianjin, 300387, P. R. China.

出版信息

Adv Sci (Weinh). 2025 Aug;12(31):e00666. doi: 10.1002/advs.202500666. Epub 2025 Jun 5.

Abstract

Bismuth vanadate (BiVO) is known as one of the most potential candidates in photocatalytic water oxidation for supplying oxygen in extreme environment. However, its photocatalytic oxygen evolution is hindered by the rapid photogenerated charge carrier separation efficiency. Herein, plasmonic bismuth (Bi) nanoparticles loaded BiVO is prepared for photocatalytic water oxidation. Specifically, the plasmonic bismuth nanoparticles are in situ loaded on the BiVO via reduction of partial BiVO, allowing the formation of the Bi─O─V covalent bridges. Based on the femtosecond transient absorption spectroscopy and density functional theory calculations, such Bi─O─V covalent bridges can significantly facilitate the migration of the plasmonic-induced hot electrons from Bi to BiVO, allowing more photogenerated charge carrier to participate in the surface reaction. As a result, the optimized Bi/BiVO demonstrates a record-high photocatalytic evolution rate of 4567.94 µmol h g. More importantly, the obtained Bi/BiVO show plausible photocatalytic water oxidation capability (oxygen production rate of 381.47 µmol h g) under near-infrared light irradiation, further collaborating its potential to be utilized in extreme conditions. This work on design of low-cost and highly-efficient photocatalysts for water oxidation is anticipated to push forward the development of photocatalytic oxygen production in various application scenarios.

摘要

钒酸铋(BiVO)被认为是在极端环境下光催化水氧化产氧的最具潜力的候选材料之一。然而,其光催化析氧受到快速的光生载流子分离效率的阻碍。在此,制备了负载等离子体铋(Bi)纳米颗粒的BiVO用于光催化水氧化。具体而言,通过部分BiVO的还原,将等离子体铋纳米颗粒原位负载在BiVO上,从而形成Bi─O─V共价桥。基于飞秒瞬态吸收光谱和密度泛函理论计算,这种Bi─O─V共价桥可以显著促进等离子体诱导的热电子从Bi迁移到BiVO,使更多的光生载流子参与表面反应。结果,优化后的Bi/BiVO表现出创纪录的高光催化析氧速率,为4567.94 µmol h g。更重要的是,所制备的Bi/BiVO在近红外光照射下表现出合理的光催化水氧化能力(产氧速率为381.47 µmol h g),进一步证明了其在极端条件下应用的潜力。这项关于设计低成本、高效水氧化光催化剂的工作有望推动光催化产氧在各种应用场景中的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ae5/12376518/2076cbbda8e9/ADVS-12-e00666-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验